期刊文献+

基于多控制器的直接自适应控制 被引量:2

Direct Adaptive Control Based on Multiple Controllers
下载PDF
导出
摘要 为解决多模型自适应控制可能造成的模型失配不稳定性问题,利用非伪控制理论,提出了一种直接辨识控制器的方法。由一步超前控制器构造控制器集,通过一个具有一定属性的恰当选择的代价函数,只要控制器集中至少存在一个镇定的控制器,即自适应控制问题是可行的,滞后切换逻辑总能快速将镇定控制器切换到控制回路中,保证闭环系统稳定和输出误差渐近趋于零。给出了闭环系统在L2e意义下输入输出稳定性结论,并给出仿真实例验证其有效性。 To solve the model-mismatch instability problem which may be caused by multiple model adaptive control, a method which directly identifies the candidate controllers using unfalsified control theory is provided. The candidate controller set is constructed by one step ahead of controller. Whenever there exists at least one stabilizing controller in the candidate controller set, i.e., the adaptive control problem is feasible, through a suitably chosen cost function which has some properties, the hysteresis switching logic will quickly switch the stabihzing controller to the control loop, guaranteeing that the closed-loop system is stable and the tracking error is asymptotically zero. The input-output stability of the closed-loop system in the sense of L2e is given. Simulation example is given to show the efficiency of this method.
作者 游乙龙 李平
出处 《控制工程》 CSCD 2008年第3期291-294,共4页 Control Engineering of China
基金 国家自然科学基金资助项目(60774019 60374009) "新世纪优秀人才支持计划"基金资助项目(NCET-06-0751) 广东省自然科学基金资助项目(04010976)
关键词 多控制器自适应控制 非伪控制 L2e稳定性 multiple controller adaptive control unfalsified control L2e stability
  • 相关文献

参考文献14

  • 1Morse A S. Control using logic-based switching[ M]. New York: Springer-Verlag, 1997.
  • 2Narendra K S, Xiang C. Adaptive control of discrete-time systems using muhiple models[ J]. IEEE Transaction on Automatic Control, 2000,45 (9) : 1669-1686.
  • 3Brian D O, Thomas A, Brinsmead S. Multiple model adaptive control, Part 1: finite controller coverings [J]. Int J of Robust and Nonlinear Control, 2000,10(11-12) :909-929.
  • 4王昕,岳恒,柴天佑,李小平.基于多模型切换的多变量直接自适应极点配置控制器[J].控制理论与应用,2001,18(z1):23-27. 被引量:8
  • 5王昕,李少远,岳恒.一类非最小相位系统分层递阶多模型解耦控制器[J].控制理论与应用,2005,22(2):201-206. 被引量:5
  • 6Fu M Y, Barmish B R. Adaptive stabilization of linear systems via switching control[J]. IEEE Trans Automat Contr, 1986,31 (12) : 1097- 1103,
  • 7Stefanovic M, Wang R, Safonov M G, Stability and convergence in adaptive systems[ C]. Boston, Massachusetts : 2004 American Control Conference, 2004.
  • 8Safonov M G,Tsao Y C. The tmfalsified concept and learning[J].IEEE Trans on Automatic Control, 1997,42(6) :2819-2824.
  • 9Wang R, Safonov M G. Stability. of unfalsified adaptive control using multiple controllers [ C ]. Portiand, OR, USA: 2005 American Control Conference, 2005.
  • 10Paul A. MCAC: cost-detactability, stability and some applications[D]. Los Angeles, California: University of Southern California,2005,

二级参考文献15

  • 1王昕,岳恒,柴天佑,李小平.基于多模型切换的多变量直接自适应极点配置控制器[J].控制理论与应用,2001,18(z1):23-27. 被引量:8
  • 2[1]Coodwin G C, Hill D J and Palaniswami M. A perspective on convergence of adaptive control algorithms [ J]. Automatica, 1984, 20(5) :519-531
  • 3[2]Wittenmark B. and Astrom K J. Practical issues in the implementation of self-tuning control [J]. Automatica, 1984, 20(5) :595-605
  • 4[3]Narendra K S, Balakrishnan J and Ciliz M K. Adaptation and learming using multile models, switching, and tuning [J]. IEEE Control Systems Magazine, 1995,15(3): 37-51
  • 5[4]Narendra K S and Balakrishnan J. Improving transient response of adaptive control systems using multiple models and switching [ J ].IEEE Trans. Automat. Contr., 1994, 39(9): 1861-1866
  • 6[5]Narendra K S and Balakrishnan J. Intelligent control using fixed and adaptive models [A]. In Proc. IEEE 33rd Conference on Decision and Control [C], Vista, FL, 1994, 1680-1685
  • 7[6]Narendra K S and Balakrishnan J. Adaptive control using multiple models [J] IEEE Thans. Automat. Contr., 1997, 42(2): 171-187
  • 8[7]Narendra K S and Xiang C. Adaptive control of discrete-time systems using multiple models [A]. In Proc. IEEE 37th Conference on Decision and Control [C] ,Tampa, FL, 1998,3978-3983
  • 9[8]Chai Tianyou. Multivariable Adaptive Decoupling Control and Its Applications [M]. Beijing: Science Press, 2001
  • 10[9]Sun Zengqi. Theory and Application of Cormputer Control [M]. Beijing: Tsinghua University Press, 1989

共引文献10

同被引文献23

  • 1李世华,田玉平.非完整移动机器人的有限时间跟踪控制算法研究[J].控制与决策,2005,20(7):750-754. 被引量:19
  • 2侯忠生.无模型自适应控制的现状与展望[J].控制理论与应用,2006,23(4):586-592. 被引量:130
  • 3潘天红,李少远.基于即时学习的非线性系统优化控制[J].控制与决策,2007,22(1):25-29. 被引量:11
  • 4Xu Dong, Zhao Dongbin, Yi Jianqiang, et al. Trajectory tracking control of omnidirectional wheeled mobile manipulators: Robust neural network-based sliding model approach[J]. IEEE Trans on Systems, Man and Cybernetics: Part B, 2009, 39(3): 788-799.
  • 5Kanayama Y, Kimura Y, Miyazaki E A stable tracking control method for an autonomous mobile robot[C]. Proc of the 1990 IEEE Int Conf on Robotics and Automation. Cincinnati, 1990: 384-389.
  • 6Brockett R W. Asymptotic stability and feedback stabilization[M]. Boston: Birkhauser, 1983.
  • 7Luca A D, Oriolo G, Venditteli M. Control of wheeled mobile robots: An experimental overview[C]. RAMSETE: Articulated and Mobile Robotics for Services and Technologies. Berlin: Springer, 2001: 181-216.
  • 8Safonov M G, Tsao T C. The unfalsied control concept: A direct path from experiment to controller[C]. Feedback Control, Nonlinear Systems, and Complexity. Berlin: Springer-Verlag, 1995: 196-214.
  • 9Safonov M G, Tung-Ching Tsao. The unfalsified control concept and learning[J]. IEEE Trans on Automation Control, 1997, 42(6): 843-847.
  • 10Van Helvoort J, De Jager B, Steinbuch M. Data-driven multivariable controller design using ellipsoidal unfalsified control[J]. Systems and Control Letters, 2008, 57(9): 759- 762.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部