期刊文献+

求解下模集函数最大值问题的局部搜索算法 被引量:5

Local Search Algorithm for Solving Maximizing Submodular Set Function
下载PDF
导出
摘要 给出了求解具有简单约束的下模集函数最大值问题的一种局部搜索算法,并讨论了所给算法的性能保证.该算法的基本思想是:算法每次迭代总是在当前近似解集的邻域内,求出使目标函数取得最大的集合,将其作为新的近似解集.分析表明,所给算法是一种多项式时间近似算法. This paper presents a local search algorithm which maximizes a nondecreasing submodular set function and discusses its performance guarantee as well. The basic idea lies in which each iterative algorithm is always in the neighborhood sets of the current approximate solution, solving a set which maximize the objective function is a new approximate set. Analysis shows that the algorithm is a polynomial time algorithm.
出处 《温州大学学报(自然科学版)》 2008年第3期12-17,共6页 Journal of Wenzhou University(Natural Science Edition)
关键词 组合优化 下模集函数 近似算法 性能保证 Optimal combination Submodular set function Approximation algorithm Performance guarantee
  • 相关文献

参考文献3

  • 1[1]Cunningham W H.On submodular function minimization[J].Combinatorica,1985,5:185-192.
  • 2[2]ILev V E An approximation guarantee of the greedy descent algorithm for minimizing supermodular set function[J].Discrete Applied Mathematics,2001,114:131-146.
  • 3[3]ILev V P,Linker N.Performance guarantee of a greedy algorithm for miniminzing a supermodular set function on comatroid[J].European Journal of Operational Research,2006,171:648-660.

同被引文献22

  • 1黄辉,梁国宏,张生,何尚录.求解一类线性规划问题的原始贪婪算法和对偶贪婪算法及其相互关系[J].兰州交通大学学报,2007,26(1):149-152. 被引量:3
  • 2M SVIRIDENDO A. 1.5282-approximation algorithm for metric uncapacitated facility location problem[C]//Proceeding of 9th Conference on Integer Progamming and Combinatorial Optimization, Cambridge, MA, USA, 2002:458.
  • 3FISHER M L, NEMHAUER G L,WOLSEY L A. An analysis of approximations for maximizing su-bmoudlar set ftmctions.II [J]. Mathematical Programming study, 1978, 8:73-87.
  • 4NARAYANAN H. Submodular Functions and Electrical Networks[M]. Vehicles:North Holland, 1997.
  • 5IGOR DOLINKA. Idempotent Distributive semingrings with involution, Int. J. Algebra Comp. (2003).
  • 6A. Farahat and C. Barnhart. Improved bounds and a generalized greedy algorithm for maxi - mizing submodlar functions over matroi- ds. Massachusetts Institute of Technology,2004.
  • 7G. L. Nemhauser, Wolsey L A, Fisher M L. An analysis of approximations for maximizing submodular set functions I. Mathematical programming, 1978,125 (14) :265 - 294.
  • 8C. Chekuri and S. Khanna. A polynomial time approximation scheme for the multiple knapsack problem. SISM Journal on Compu- ting,35:713 -728,2006.
  • 9陈宝林.最优化理论与算法[M].北京:清华大学出版社,2006.
  • 10FISHER M L, NEMHAUSER G L, WOLSEY L A, et al. An analysis of approximations for maximizing submodular set functions-II[]~. Mathematical Pro- gramming Study, 1978, 8: 73-87.

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部