期刊文献+

鞅分析在最优投资与消费策略中的应用 被引量:4

Application of Martingale Analysis to Optimal Investment and Consumption Strategies
下载PDF
导出
摘要 在推广后的Black-Scholes模型框架基础上,探讨了不完全市场中金融资产价格受公司的盈利指标、通货膨胀率,外部经济因素等随机因素影响的最优投资与消费问题,运用鞅分析方法证明了受随机因素影响的投资与消费模型中最优投资与消费策略的存在性,进一步利用鞅分解定理表示出期末终端财富的表达式.同时,以效用函数为决策依据,对HARA效用函数给出了投资者具体的投资与消费策略,从而为投资者实现期末终端财富最大化提供了方法和依据. We discuss the problem of optimal investment and consumption in the incomplete markets in which the finace asset pricing is influenced outer economic factors that the payoff index,inflation rate, and use the martingale analysis method to prove the exist of optimal strategies of investment and consumption in the investment and consumption model which is influenced of random factors, and make use of the martingale decomposition theorem to give the expression of termind wealth, simultaneity according as utility function for the HARA utility function give the concrete investment and consumption strategies, thereby provide the method and gist in order to actualize maximal termind wealth.
出处 《哈尔滨理工大学学报》 CAS 2008年第2期119-122,共4页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金项目资助(10371027) 黑龙江省教育厅科研基金项目资助(11511092)
关键词 鞅分析 效用函数 不完全市场 最优投资与消费 martingale anallysis utility function incomplete markets optimal investment and consumption
  • 相关文献

参考文献5

二级参考文献16

  • 1Pikovsky I, Karatzas I. Anticipative portfolio optimization[J]. Adv. Appl. Probab. 1996,28: 1095-1122.
  • 2Amendinger J, Imkeller P, Schweizder M. Additional logarithmic utility of an insider [J]. Stochastic Process. Appl. , 1998,75 : 263 -286.
  • 3Amendinger J. Martingale representation theorems for initially enlarged filtrations[J].Stochastic Process. Appl. ,2000,89 : 101- 116.
  • 4Pham H, Quenez M-C. Optimal portfolio in partially observed stochastic volatility models[J]. The Annals of Appl. Probab. , 2001,11 (1) : 210-238.
  • 5R S Liptser, A N Shiryayev. Statistics of Random Processes I (General Theory)[M]. Springer-Verlag,1977.
  • 6赵达纲,哈尔滨工业大学学报,1991年,数学专辑
  • 7刘智慧,数学物理学报,1986年,6卷,333页
  • 8AMENDINGER J. Martingale representation theorems for initially enlarged filtrations [J]. Stoch Proc Appl, 2000, 89(1):101-116.
  • 9AMENDINGER J, BECHERER D. A monetary value for initial information in portfolio optimization [J]. Finance and Stochastics, 2003, 7(1): 29-46.
  • 10CARMONA R A, CINLAR E, EKELAND I. Paris-Princeton Lectures on Mathematical Finance 2002 [C]//Germeny,Berlin. Springer-Verlag, 2003.

共引文献34

同被引文献23

  • 1刘玉琴,戴金辉,隋聪.有限不可获得或有权益当前价格已知情况下鞅表示定理的形式[J].辽宁大学学报(自然科学版),2005,32(3):284-286. 被引量:1
  • 2张鸿雁,李滚.最优投资消费问题的对偶解法[J].云南大学学报(自然科学版),2006,28(6):461-466. 被引量:4
  • 3Cvitanic J, Spivak G. Maximizing the probability of a perfect hedge[J] .Arm Appl Prob, 1999,9(4):1303- 1328.
  • 4Heath D. A continuous-time version of Kulldorff's result [ J ]. Asian J Math, 1993,11 (6) : 288 - 332.
  • 5Karatzas I. Adaptive control of a diffusion to a goal and a parabolic Monge-Amperer-type equation[ J]. Asian J Math, 1997,1(2):295 - 313.
  • 6Lakner P. Utility maximization with partial information [ J ]. Stochastic Processes and their Applications, 1995,5 (6) : 250 - 271.
  • 7Lakner P. Optimal trading strategy for an investor:the case of partial information [ J ]. Stochastic Processes and their Applications, 1998,7(6) :77 - 95.
  • 8Karatzas I, Shreve S. Brownian motion and stochastic calculus[ M ]. USA: Springer Verlag, 1987 : 255 - 298.
  • 9Kulldorff M. Optimal control of a favourable game with a time-limit[ J]. SIAM J Control and Optimization, 1993,3( 1 ) :55 - 68.
  • 10LIN C.Stochastic mean and stochastic volatility:a three-factor model of the term structure of interest rates[J].Cambridge Financial Markets Titutions & Instruments,2002,9(2):36-44.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部