期刊文献+

复杂性状遗传分析策略和方法研究进展 被引量:3

Advances in Research of Strategies and Methods for Analyzing Complex Traits
下载PDF
导出
摘要 复杂性状是指由多基因和非遗传因素共同作用的一类性状的总称,包括表型呈连续分布的经典数量性状,多基因控制但表型呈间断分布的二歧或多歧性状,以及难以准确度量的动物各种行为性状等。动植物的许多重要经济性状以及人类复杂疾病均属于复杂性状范畴。阐明复杂性状的遗传基础,对于动植物新品种的遗传改良具有十分重要的意义。本文在阐述复杂性状基本概念的基础上,综述了复杂性状的遗传分析策略以及近年来取得的主要研究进展。最后,对后基因组时代复杂性状基础研究面临的挑战提出了一些讨论,以供参考。 Complex traits are features whose properties are determined by both genetic and environmental factors. Generally, complex traits include the classical quantitative traits with continuous distribution, the binary or categorical traits with discrete distribution controlled by polygene and animal behavior that can not be phenotyped accurately. Most economically important traits in plants and animals are categorized into this kind of traits. Understanding the molecular basis of complex traits plays a vital role in the genetic improvement of plant and animal breeding. In this article, The anthor summarized the conception and research background of complex traits, and reviewed the strategies, methods and the great progress that had been made in dissecting genetic basis of complex traits. The challenges and possible developments were also discussed.
出处 《中国农业科学》 CAS CSCD 北大核心 2008年第5期1255-1266,共12页 Scientia Agricultura Sinica
基金 国家重点基础研究发展计划("973"计划)项目(2006CB101700) 教育部"新世纪优秀人才支持计划"(NCET2005-05-0502) 国家自然科学基金(30370758) 江苏省自然科学基金(BK2006066)
关键词 复杂性状 遗传基础 遗传资源 数量性状 Complex trait Genetic basis Genetic resource Quantitative trait
  • 相关文献

参考文献115

  • 1Rieseberg L H, Sinervo B, Linder C R, Ungerer M C, Arias D M. Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science, 1996, 272(5262): 741-745.
  • 2Allard R W. Genetic basis of the evolution of adaptedness in plants. Euphytica, 1996, 92( 1-2): 1-11.
  • 3Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the USA, 2003, 100(5): 2574-2579.
  • 4Malmberg R L, Held S, Waits A, Mauricio R. Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics, 2005, 171(4): 2013-2027.
  • 5Zeyl C, Andreson B, Weninck E. Nuclear-mitochondrial epistasis for fitness in saccharomyces cerevisiae. Evolution, 2005, 59(4): 910-914.
  • 6Rand D M, Fry A, Sheldahl L. Nuclear-mitochondrial epistasis and drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds. Genetics, 2006, 172(1): 329-341.
  • 7Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics, 2001, 158(4): 1737-1753.
  • 8Jasienski M, Ayala F J, Bazzaz F A. Phenotypic plasticity and similarity of DNA among genotypes of an annual plant. Heredity, 1997, 78 (Pt 2): 176-181.
  • 9CTC (Members of the Complex Trait Consortium). The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36( 11 ): 1133-1147.
  • 10Carlson C S, Eberle M A, Kruglyak L, Nickerson D A. Mapping complex disease loci in whole-genome association studies. Nature, 2004, 429(6990): 446-452.

同被引文献105

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部