期刊文献+

一类基于比率的捕雠饵系统定性分析 被引量:1

On qualitative analysis of a kind of ratio dependent predator-prey system
下载PDF
导出
摘要 研究一类基于比率和HollingⅢ功能性反应的捕食-食饵系统.运用示性方程G(θ)=0,讨论了奇点(0,0)附近轨线的走向,并在此基础上,给出了系统平衡点是全局吸引子或者是吸引子的条件.最后通过构造境界线,运用Bendixson环域定理,得到了极限环存在的充分条件. A ratio dependent predator-prey system with Holling type Ⅲ functional response is considered. Asymptotic behavior of the singular point(0,0) is discussed by using characteristic equation, and then sufficient conditions are derived for the system equilibriums of whether global attractors or attractors. The existence of the limit cycle is studied by constructing boundary-line and by using Bendixson theorem.
出处 《上海理工大学学报》 EI CAS 北大核心 2008年第2期107-111,共5页 Journal of University of Shanghai For Science and Technology
关键词 比率 高阶奇点 极限环 吸引子 ratio-dependent singular point of higher order limit cycle attractor
  • 相关文献

参考文献4

  • 1XIAO D, RUAN S. Global dynamics of a ratio-depen- dent predatorprey system [J ]. J Math Biol, 2001, 43 : 268 - 290.
  • 2KUANG Y, BERETTA E. Global qualitative analysis of a ratio-dependent predator- prey system[J ]. J Math Biol, 1998, 36 : 389 - 406.
  • 3HSU, KUANG Y. Global analysis of the Miehaelis- Menten type ratio-dependent predator-prey system[J]. J Math Biol, 2001, 42:489-506.
  • 4王琳琳.自治HollingⅢ类功能性反应的捕食-食饵系统的定性分析[J].西北师范大学学报(自然科学版),2005,41(1):1-6. 被引量:10

二级参考文献19

  • 1Holling C S. The functional response of predator to prey density and its role in mimicry and population regulation[J].Mem Ent Sec Can, 1965, 45: 1-60.
  • 2Berryman A A. The origins and evolution of predator-prey theory[J]. Ecology, 1992, 75: 1530-1535.
  • 3Rosenzweig M L. Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time[J]. Science, 1969, 171: 385-387.
  • 4Rosenzweig M L, MacArthur R. Graphical representation and stability conditions of predator-prey interactions[J].AmerNat, 1963, 97: 209-223.
  • 5Arditi R, Ginzburg L R. Coupling in predator-prey dynamics, Ratio-dependence[J]. J Theo Biol, 1989, 139: 311-326.
  • 6Freedman H I. Deterministic Mathematical Models in Population Ecology[M]. New York: Marcel Dekker, 1980.
  • 7Berryman A A. The origins and evolution of predator-prey theory[J]. Ecology, 1992, 75: 1530-1535.
  • 8Holling C S. The functional response of predator to prey density and its role in mimicry and population regulation[J].MemEnt Sec Can, 1965, 45: 1--60.
  • 9May R M. Time delay versus stability in population models with two and three trophic levels[J]. Ecology, 1973, 45315-325.
  • 10Ruan S, Xiao D. Global analysis in a predator-prey system with nonmonotonie functional response[J]. SIAM J Appl Math, 2001, 61, 1445-1472.

共引文献9

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部