期刊文献+

一步法合成SO_4^(2-)/TiO_2酸位结构及酯化机理研究 被引量:2

Structure and catalysis for esterification mechanism of sulfated titania prepared by one-step
原文传递
导出
摘要 利用高酸值麻疯树油中游离脂肪酸与甲醇酯化反应作为目标反应,通过直接煅烧工业原料偏钛酸,制得高酯化活性的ST(SO42-/TiO2)固体酸.FTIR研究表明:ST固体酸具有焦硫酸结构酸位,含有高键级高共价特性S=O.S=O强烈的诱导效应提高了与之相连的配位不饱和钛原子的路易斯酸性,吸水后产生质子酸.随着硫含量增加,质子酸性增加.ST固体酸制备过程中,硫酸根与二氧化钛发生固相反应,硫酸根强键合在二氧化钛表面,同时部分硫酸根分解产生三氧化硫并原位吸附,从而形成固体酸位.ST固体酸通过质子化羧酸、甲醇亲核加成、脱水脱质子机理催化酯化反应.对于麻疯树油中游离脂肪酸与甲醇的酯化反应,酸强度H0介于-12.70与-8.2之间的酸中心具有较好的催化活性. For esterification of free fatty acid in high acid value Jatropha curccas L. seed oil with methanol, ST(SO^2-4/TiO2) solid acid prepared by directly calcining cheap industrial metatitanic acid has high activity. FTIR studies suggested that ST solid acid possessed pyrosulfate structure with high bond order and high covalent S=O. The intensive inductive effect of S=O made the neighboring unsaturated coordinated titanium atom to have strong Lewis acidity, which converted protonic acidic sites when the catalyst absorbed water. The protonic acidity increased with the S content increasing. During preparing ST solid acid, the sulfate was effectively binded to the titania surface through the solid phase reaction of sulfate with titania. At the same time, SO3 generated by decomposition of partial sulfate was absorbed ill situ and formed solid acid structure. The strong acid site increased and the weak acid site decreased with the calcination temperature increasing. Since the surface sulfate decomposed at higher calcination temperature, the amount and strength of acid site deceased sharply, which induced the decreasing of the esterification activity of the ST solid acid. For the esterification of free fatty acid in high acid value Jatropha curccas L. oil with methanol, the acid site in H0 between - 12.70 and -8.2 has better catalytic activity. The ST solid acid catalysed esterification proceeds through a reaction routine of protonating fatty acid, which conducts nucleophilic addition with methanol and then deprotonating.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期296-301,307,共7页 Journal of Yunnan University(Natural Sciences Edition)
基金 四川省应用基础研究项目资助(2006J13014)
关键词 SO^2-4-/TiO2 一步合成 结构 酯化机理 sulfated titania one-step preparation structure esterification mechanism
  • 相关文献

参考文献11

  • 1杨颖.生物柴油产业国内外现状及我国发展对策[J].粮油加工,2007(10):75-78. 被引量:5
  • 2RIEMER T,SPIELBAUER D,HUNGER M,et al. Superacid properties of sulfated zirconia as measured by raman and ^1H MAS NMR spectroscopy[J]. Journal of the Chemistry Society, Chemical Communications, 1994, 13 (10):1 181-1 182.
  • 3WHITE R L, SIKABWE E C,COELHO M A,et al. Potential role of penta-coordinated sulfur in the acid site structure of sulfated Zirconia[ J]. Journal of Catalysis, 1995,157(2) :755-758.
  • 4BABOU F, COUDURIER G, VEDRINE J C. Acidic properties of sulfated zirconia: an infrared spectroscopic study[J] .Journal of Catalysis, 1995,152(2) :341-349.
  • 5杨颖,兰刚,李玉峰.麻疯树油制备生物柴油中SO_4^(2-)/TiO_2固体酸研究[J].云南大学学报(自然科学版),2007,29(6):617-622. 被引量:7
  • 6MORTERRA C, CERRATO G, BOLIS V. Lewis and bronsted acidity at the surface of sulfated-doped ZrO2 catalysts[J]. Catalysis Today, 1993,17(3) :505-515.
  • 7MORTERRA C, CERRATO G, EMANUEL C. On the surface acidity of some sulfate-doped ZrO2 catalysts[J]. Journal of Catalysis, 1993,142(2) :349-367.
  • 8JON T, YAMAGUCHI T, TANABE K. Mechanism of acidity generation on sulfur-promoted metal oxides[J]. Journal of Physical Chemistry, 1986, 90 (20): 4 794- 4 796.
  • 9LI X B, NAGAOKA K, LERCHER J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomeriztion at low temperatures [ J]. Journal of Catalysis, 2004,227 ( 1 ) : 130-137.
  • 10HINO M, KURASHIGE M, MATSUHASHI H. The surface structure of sulfated zirconia: studies of XPS and thermal analysis [ J ]. T hermochimica Acta, 2006, 441(1):35-41.

二级参考文献24

  • 1[1]George W.Huber,Sara Iborra.Avelino Corma.Synthesis of transportation fuels from biomass:Chemistry,Catalysts,and Engineering[J].Chemical Reviews,2006,106(9):4044~4098.
  • 2[2]Mustafa Canakci.Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel[J].Bioresouree Technology,2007,98(6):1167~1175.
  • 3[3]Sérgio Maehado Corr(e)a,Graciela Arbilla.Aromatic hydrocarbons emissions in diesel and biodiesel exhaust[J].Atmespheric Environment,2006,40(35):6821~6826.
  • 4[4]Jared A.DeMello,Catherine A.Carmiehael,Emily E.Peacock.Biedegradation and environmental behavior of biediesel mixtures in the Sea:An Initial Study[J].Marine Pollution Bulletin,2007,accepted.
  • 5[5]Magín Lapuerta,José Rodríguez-Fernández,John R.Agudelo.Diesel particulate emissions from used cooking oil Biodiesel[J].BioresourceTechnology,2007,accepted.
  • 6[6]Ayhan Demirbas.Progress and recent trends in biofuels[J].Progress in Energy and Combustion Science,2007,33(1):1~18.
  • 7[7]Mangesh G.Kulkarni,Ajay K.Dalai.Waste cooking oils an economical source for biodiesel:A Review[J].Industrial and Engineering Chemistry Research,2006,45(9):2901~2913.
  • 8[8]M.A.Dubé,A.Y.Tremblay,J.Liu.Biodiesel production using a membrane reactor[J].Bioresouree Technology,2007,98(3):639~647.
  • 9[9]Peigang Cao,A.Y.Tremblay,M.A.Dubé.Effect of membrane pore size on the performance of a membrane reactor for biediezel production[J].Industrial and Engineering Chemistry Research,2007,46(1):52~58.
  • 10[10]Kahraman Bozbas.Biodiesel as an alternative motor fuel:production and pelicied in the european union[J].Renewalbe and Sustainable Energy Renews,2007,accepted.

共引文献10

同被引文献24

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部