期刊文献+

基于粗糙集分类算法研究与实现 被引量:5

Research and realization of classification based on rough set theory
下载PDF
导出
摘要 数据挖掘是人工智能中知识发现的重要组成部分,而分类又是一种主要的应用形式。ID3算法是数据挖掘中经典的决策树分类算法,ID3算法具有抗噪声能力差的缺点。通过对分类和粗糙集理论的研究,将可变精度粗糙集理论的思想应用在计算属性信息熵时设定阈值上,以放宽属性选择的要求,从而对经典的ID3算法作了相应的改进。改进后的ID3算法(称之为VPID3算法)可在一定程度上降低噪声对系统分类的干扰,提高了有数据有噪声情况下的分类精度。另外根据该算法设计并实现了一个分类器,并通过实验检验了该算法的性能。 Data mining is an important part of AI and classification is a kind of useful application.ID3 algorithm is a classical algorithm in data mining,the algorithm has the worse ability to resist noise.Through the research on variable precision rough set,the algorithm is improved by setting threshold value while calculating attributes’ entropy,in order to relax the restrictions while selecting attributes.After using the improved ID3 algorithm(VPID3),the interference of noise to classification could be reduced to a certain extent,this made result correspond to reality even more.Finally,the paper designs and realizes a classifier using VPID3 algorithm and do some experiments to check its performance.Extensive experiments with four different datasets have shown that our algorithm is more effective in dealing with noise data than ID3 algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第15期142-144,157,共4页 Computer Engineering and Applications
关键词 数据挖掘 分类 决策树 粗糙集 ID3 data mining,classification,decision tree,rough set,ID3,entropy
  • 相关文献

参考文献6

  • 1Han Jiawei,Kamber M.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.
  • 2Quinlan J R.Induction of decision tree[J].Machine Learning, 1986, 1:81-106.
  • 3Pawlak Z.Rough sets theoretical aspects of reasoning aleut data[M].Dordrect:Kluwer Academic Publishers, 1991.
  • 4Ziarko W.Variable precision rough set model[J].Journal of Computer and System Sciences, 1993,46:39-59.
  • 5陈湘晖,朱善君,吉吟东.基于熵和变精度粗糙集的规则不确定性量度[J].清华大学学报(自然科学版),2001,41(3):109-112. 被引量:23
  • 6梁吉业,孟晓伟.信息熵在粗糙集理论中的应用[J].山西大学学报(自然科学版),2002,25(3):281-284. 被引量:21

二级参考文献6

  • 1[1]Pawlak Z, Grzymala-Busse J, Slowin ski R, et al. Rough sets [J]. Communications of the ACM, 1995, 38(11): 88-95.
  • 2[2]Düntsch I, Gediga G. Uncertainty measures of rough set prediction [J]. Artificial Intelligence, 1998, 106: 109-137.
  • 3[3]Ziarko W. Variable precision rough set model [J]. Journal of Computer and System Sciences, 1993, 46: 39-59.
  • 4[4]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data [M]. Dordrecht: Kluwer Academic Publishers, 1991.
  • 5苗夺谦,王珏.粗糙集理论中知识粗糙性与信息熵关系的讨论[J].模式识别与人工智能,1998,11(1):34-40. 被引量:138
  • 6梁吉业,徐宗本,李月香.包含度与粗糙集数据分析中的度量[J].计算机学报,2001,24(5):544-547. 被引量:23

共引文献81

同被引文献48

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部