期刊文献+

量子小波神经网络及其在漏钢预报中的应用 被引量:4

Quantum wavelet neural networks and its application in breakout prediction
下载PDF
导出
摘要 针对传统神经网络收敛速度慢,收敛精度低,以及用于模式识别泛化能力差的问题。提出了将量子神经网络与小波理论相结合的量子小波神经网络模型。该模型隐层量子神经元采用小波基函数的线性叠加作为激励函数,称之为多层小波激励函数,这样隐层神经元既能表示更多的状态和量级,又能提高网络收敛精度和速度。给出了网络学习算法。并以之在漏钢预报波形识别中的应用验证了该模型和学习算法的有效性。 In order to overcome the problems of slow speed and low accuracy of convergence and the shortcomings of generalization ability for pattern recognition of the traditional neural networks,the quantum neural network combines with wavelet theory form the wavelet quantum neural network model is given.The quantum neurons of hidden layer of the model using a linear superposition of wavelet function as incentive function,called multi-wavelet incentive function,such hidden layer neurons not only can express more of the status and magnitude,but also can improve network speed and accuracy of convergence.The same time this paper presents a learning algorithm.And the validity of the model and the study algorithm are proved by its application in recognition of breakout prediction.
作者 杨琴 彭力
出处 《计算机工程与应用》 CSCD 北大核心 2008年第15期242-245,248,共5页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60674092) 江苏省高科技研究项目(No.工业BG2006010)
关键词 量子小波神经网络 模式识别 多层小波激励函数 漏钢预报 quantum wavelet neural networks,pattern recognition,multi-wavelet incentive function,breakout prediction
  • 相关文献

参考文献13

  • 1Ohkura M,Shimata Y,Shiono M,et al.On discrimination of hand-written similar KANJI character by subspace method using several features[C]//Proceeding of the Second International Conference Document Analysis and Recognition,1993:589-592.
  • 2Karayiannis N B,Xiong Yao-hua.Training reformulated radial basis function neural networks capable of identifying uncertainty in data classification [J].IEEE Transactions on Neural Networks,2006,17 (5): 1222-1234.
  • 3Zhou J, Gan Q,Kxzyzak A,et al.Recognition of handwritten numerals by quantum neural network with fuzzy features[J].International Journal on Document Analysis and Recognition, 1999,2( 1 ) : 30-36.
  • 4Behman E C,Chandrashkar V G,Wang C K.A quantum neural network computes entanglement[J].Physical Review Letters,2002,16 ( 1 ) : 152-159.
  • 5Zhang B,Srihari S N.Fast k-nearest neighbor classification using cluster-based trees[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(4):525-528.
  • 6Kretzschmar R,Bueler R,Karayiannis N B,et al.Quantum neural networks versus conventional feedforward neural networks:an experimental study[C]//Proceedings of the 2000 IEEE Signal Processing Society Workshop on Neural Networks,2000,1:328-337.
  • 7Karayiannis N B,Mukherjee A,Glover J R,et al.An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram[J].Soft Computing,2006,10(4): 382-396.
  • 8Karayiannis N B,Mukherjee A,Glover J R.Detection of pseudosinusoidal epileptic segments in the neonatal EEG by cascading a rulebased algorithm with a neural network[J].IEEE Transaction on Biomedical Englneering, 2006,54(4) : 633-641.
  • 9Zhou J,Qing G,Krzyzak A.Recognition of handwritten numerals by quantum neural network with fuzzy features[J].IJDAR, 1999,2:30-36.
  • 10Li F,Zhao .S G,Zheng B Y.Quantum neural network in speech reeognition[C]//Proe of 6th International Conference on Signal Processing, 2002,2: 1627-1270.

二级参考文献6

共引文献18

同被引文献78

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部