期刊文献+

Dual Toeplitz Algebra on the Polydisk 被引量:4

Dual Toeplitz Algebra on the Polydisk
下载PDF
导出
摘要 In this paper,we prove the dual Toeplitz algebra I(C(D^-n))contains the ideal к of compact operators as its semicommutator ideal,and study its algebraic structure.We also get some results about spectrum of dual Toeplitz operators. In this paper,we prove the dual Toeplitz algebra I(C(D^-n))contains the ideal к of compact operators as its semicommutator ideal,and study its algebraic structure.We also get some results about spectrum of dual Toeplitz operators.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第2期366-370,共5页 数学研究与评论(英文版)
基金 Foundation item: the National Natural Science Foundation of China (No. 10771064)
关键词 Bergman space dual Toeplitz operator semicommutator ideal Bergman space dual Toeplitz operator semicommutator ideal
  • 相关文献

参考文献1

二级参考文献1

  • 1Douglas. R. G.Banach algebra techniques in the theory of Toeplitz operators, in Regional Conference in Mathematics, No[]..1972

共引文献1

同被引文献19

  • 1Yu Feng LU Shu Xia SHANG.Commuting Dual Toeplitz Operators on the Polydisk[J].Acta Mathematica Sinica,English Series,2007,23(5):857-868. 被引量:8
  • 2Janson S, Peetre J, and Rochberg R. Hankle forms and the Fock space[J]. Rev Mat Iberoamericana, 1987, 3: 61-138.
  • 3Guillemin V. Toeplitz operators in n-dimensions[J]. Integr Equat Oper Th, 1984, 7: 145-205.
  • 4Berger C A and Coburn L A. Toeplitz opertors on the Segal-Bargmann Space[J]. Trans Amer Math Soc, 1987, 301: 813-829.
  • 5Stroethoff K, Hankel and Toeplitz operators on the Fock space[J]. Michigan Math J, 1992, 39: 3-16..
  • 6Lu Y. Commuting dual Toeplitz operators with pluriharmonic symbols[J]. J Math Anal Appl, 2005, 302(1): 149-156.
  • 7Lu Y. Commuting dual Toeplitz operators on the polydisc[J]. Acta Math Sinica, English Series, 2007, 23(5): 857-868.
  • 8Cheng G, Yu T. Commuting dual Toeplitz operators on the Bergman space of the polydisc[J]. Chin Quart J Math, in press.
  • 9Yu T, Cheng G. Essentially commuting dual Toeplitz operators on the polydisc[J]. Acta Math. Sinica (Chin. Ser), 2007, 50(5): 1007-1016.
  • 10Brown A and Halmos P R. Algebraic properties of Toeplitz operators[J]. J Reine Angew Math, 1964, 213: 89-102.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部