摘要
考虑线性时滞系统的输出动态反馈镇定问题.利用自由参数矩阵对闭环系统进行适当变换,并结合相应的Lyapunov-Krasovskii泛函得到了时滞相关的控制器存在性判据.利用控制器参数化方法,将控制器参数与泛函参数的求解归结为线性矩阵不等式解的形式,从而克服了时滞无关性及求解非凸优化问题所导致的保守性.仿真算例验证了结论的有效性.
The output dynamical feedback control is considered for time-delay system to stabilize the closed-loop system. A specified transformation of the closed-loop system with ftee matrices and correspondent construction of Lyapunov-Krasovskii functional are introduced, by which the delay-dependent stability criterion is derived. Furthermore, the parameterization of controller is used to establish the design condition in terms of LMI with respect to all parameters of controller and Lyapunov-Krasovskii function. The conservatism caused by delay-independence and nonconvexity in the existent results is relaxed by using the methods. Numerical examples show the effectiveness of the proposed methods.
出处
《控制与决策》
EI
CSCD
北大核心
2008年第5期546-550,共5页
Control and Decision
基金
国家863计划项目(2007AA11Z216)
国家自然科学基金项目(50708094)
关键词
时滞系统
输出动态反馈
鲁棒控制
线性矩阵不等式
Time-delay systems
Output dynamical feedback
Robust control
Linear matrix inequality (LMI)