期刊文献+

色彩梯度恒常性的光流场估计算法 被引量:2

Optical flow estimation algorithm using color gradient invariance
下载PDF
导出
摘要 为提高光流估计的鲁棒性,在彩色图像光流场计算中色彩恒常假定的基础上,进一步假定色彩梯度在运动中保持不变,据此提出了一种基于色彩梯度恒常性假设的光流求解方法,以色彩梯度构成光流基本方程,并对其施加全局平滑约束,以Gauss-Seidel迭代求解光流场,并用中值滤波去除光流场中的异常分量.实验表明,该方法相对于灰度图像序列及彩色图像序列的经典光流场估计算法可取得更好的估计效果. In optical flow estimates, it is usually necessary to assume that the fluid being measured has an unvarying color. For the sake of improving the robustness of optical flow estimates, an additional assumption is adopted that the color gradient of the measured substance is also uniform. Based on these two assumptions, a new optical flow estimation method is presented in this paper, in which the basic optical flow equation is derived in terms of the color gradient, with global smooth constraints applied on it. The flow velocity is solved through Gauss-Seidel iteration and the abnormal velocity component is removed by median filtering. The results of experiments show that this method yields better estimating results than the classic gray image sequence method and the color image sequence method.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2008年第4期400-406,共7页 Journal of Harbin Engineering University
基金 高等学校博士学科点基金资助项目(20060217021) 黑龙江省自然科学重点基金资助项目(ZJG0606-01)
关键词 光流 色彩梯度 运动估计 计算机视觉 optical flow color gradient motion estimation computer vision
  • 相关文献

参考文献9

  • 1HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17: 185-203.
  • 2LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]// International Joint Conference on Artificial Intelligence. [S. l. ], 1981.
  • 3FLEET D J, JEPSON A D. Computation of component image velocity from local phase information [J]. Int J Comp Vision, 1990, 5 : 77 104.
  • 4WEBER J, MALIK J. Robust computation of the optical flow in multi-scale differential framework [J].International Journal of Computer Vision, 1994, 2: 5-19.
  • 5BERNARD C. Wavelets and ill posed problems: optical flow and scattered data interpolation [D]. France: Ecole polytechnique, 1998.
  • 6OHTA N. Optical flow detection by color images[C]// Proceedings of IEEE International Conference on Image Processing. Singapore, 1989.
  • 7LAI J, GAUCH J, CRISMAN J D. Computing optical flow in color image sequences[J]. Innovation and Technology in Biology and Medicine, 1994, 15(1):76-87.
  • 8GOLLAND P, BRUCKSTEIN A M. Motion from color [J]. Computer Vision and Image Understanding, 1997, 68(3):346-362.
  • 9Di ZENZO S. A note on the gradient of a multi-image [J]. Computer Vision, Graphics and Image Processing, 1986, 33: 116-125.

同被引文献24

  • 1Ohta N. Optical Flow Detection By Color hnages[ C ] //Proceed ings of IEEE International Conference on Image Processing USA:IEEE Press,1989, 801 - 805.
  • 2Golland P, Bruekstein A. Motion from Color [J]. Computer Vi- sion And Image Understanding, 1997, 68 (3) :346- 362.
  • 3Gong H. Generalized Optical Flow in the Scale Space [ J]. Com- puter Vision and hnage Understanding, 2007, 105 ( 1 ) : 86 -92.
  • 4Jammal A, Venkatesh K S. A New Color Based Optical Flow Al- gorithm for Environment Mapping Using Mobile Robot[ C ] // Pro- ceedings of 22nd IEEE International Symposium on Intelligent Control. USA : IEEE Press. 2007 : 567 - 572.
  • 5Horn B K P, Schunck B G. Determining Optical Flow [J]. Arti- ficial Intelligence, 1981 , 17(1/3) :185 203.
  • 6Lucas B D, Kanade T. An Interactive Image Registration Tech- nique with Application to Stereovision [ C ]//Hayes P J. Proceed- ings of International Joint Conference on Artificial Intelligence. San Trancisco, CA, USA: Morgan Kaufmann Publishers lnc, 1981 (2) :121 -130.
  • 7Carron T, Lambert P. Color Edge Detector Using Jointly Hue, Saturation, and Intensity[ C ]//Proceedings of IEEE International Conference on. Image Processing. USA: IEEE Press, 1994, 1 (3) :977-981.
  • 8Simoncelli E P, Adelson E H, Heeger D J. Probability Distribu- tions of Optical Flow[ C]//Proc ]EEE Conf Computer Vision and Pattern Recognition. NJ USA : IEEE Press, 1991:310 - 315.
  • 9BARRON J L,FLEET D J. Systems and experiment:Performance of optical flow techniques[J].International Journal of Computer Vision,1994,(01):43-77.
  • 10HORN B K P,SCHUNCK B G. Determining optical flow[J].Artificial Intelligence,1981.185-203.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部