期刊文献+

概率方法在超图中的应用

Application of Probabilistic Method in Hypergragh
下载PDF
导出
摘要 概率方法是解决离散数学中许多问题的强有力工具,它在超图着色问题中有着重要的应用,Erds[1]和Beck[2]利用概率方法研究不具备特征B的n-一致超图的边的最小可能数m(n),得到了有关m(n)的下界.利用概率方法研究m(n)的上界,得到了有关m(n)的一个上界. The probabilisfic method is a powerful tool for solving discrete mathematic problems, they have many important applications in hypergragh. By means of the probabilistic method, Erdtisand and Beck obtain lower bounds of m ( n ) by using the minimum possible number of an n-uniform hypergragh that does not havproperty B. The paper studies the upper bound through upper bound of probabilistic method.
出处 《华东交通大学学报》 2008年第2期68-69,共2页 Journal of East China Jiaotong University
关键词 概率方法 超图 上界 probabilistie method hypergragh upper bound
  • 相关文献

参考文献5

  • 1P. Erdos. On a combinatorial problem I[ J]. Nordisk Mat. Tisdkr. 1963,11:5 - 10.
  • 2J. Beck. On 3-chromatic hyper graphs[ J]. Disc. Math, 1998,24:127 - 137.
  • 3J. A. Bondy. U. S. R. Murty. Graph theory with applications[ M ]. New York: Macmillan, 1976.
  • 4J. Radhakrishnan, A. Srinivasan. Improved bounds and algorithms for hypergraph two-coloring[ J]. Random structures and algorithms, 2000, (16) :4- 32.
  • 5N. Alon, J. Spencer. Probabilistic Method[ M]. New York: Willey - interscience Publication: 2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部