期刊文献+

H_2O_2-Promoted Size Growth of Sulfated TiO_2 Nanocrystals

H_2O_2-Promoted Size Growth of Sulfated TiO_2 Nanocrystals
下载PDF
导出
摘要 Anatase nanoparticles modified by sulfate groups were synthesized using hydrothermal method. The particles were controlled to large sizes by simply adjusting the amount of H2O2, in which HOO^- ions replaced the surface sulfate groups and reduced the steric effect to promote the grain growth. The size-induced microstructural changes of the as-prepared nanoparticles were characterized using powder XRD, FT-IR, TG. and UV-vis analyses. The sulfate groups existed on anatase surface in unidentate and bidentate coordination forms. With the particle size reduction, bandgap energies of the as-prepared anatase nanoparticles decreased, and the desorption temperature of sulfate groups shifted towards lower temperatures. Anatase nanoparticles modified by sulfate groups were synthesized using hydrothermal method. The particles were controlled to large sizes by simply adjusting the amount of H2O2, in which HOO^- ions replaced the surface sulfate groups and reduced the steric effect to promote the grain growth. The size-induced microstructural changes of the as-prepared nanoparticles were characterized using powder XRD, FT-IR, TG. and UV-vis analyses. The sulfate groups existed on anatase surface in unidentate and bidentate coordination forms. With the particle size reduction, bandgap energies of the as-prepared anatase nanoparticles decreased, and the desorption temperature of sulfate groups shifted towards lower temperatures.
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第5期622-628,共7页 结构化学(英文)
基金 This work was supported by NNSFC (No. 20671092) Science and Technology Program from Fujian Province (No. 2006J0178 and 2005HZ01-1) a grant from Hundreds Youth Talents Program of CAS (LiGS)
关键词 hydrothermal synthesis nucleophilie substitution particle growth microstructure hydrothermal synthesis, nucleophilie substitution, particle growth, microstructure
  • 相关文献

参考文献29

  • 1Mo, S. D.; Ching, W. Y. Phys. Rev. B 1995, 51, 13023-13032.
  • 2Reuntjes, J.; Schultz, M. B. J. Appl. Phys. 1968, 39, 5254-5258.
  • 3Tauster, J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170-175.
  • 4Dwyer, D. J.; Cameron, S. D.; Gland, J. Surf.. Sci. 1985, 159, 430-442.
  • 5Fujishima, A.; Honda, K. Nature 1972, 238, 37.
  • 6Diebold, U. Surf. Scie. Rep. 21103, 48, 53-229
  • 7Linsebigler, A. L.; Lu. G. Chem. Rev. 1995, 95, 735-758
  • 8Bischoff, B. L.; Anderson, M. A. Chem. Mater 1995, 7, 1772-1778
  • 9Li, G; Li, L.; Boerio-Goates, J.; Woodfield. B. E J. Am. Chem. Soc. 2005, 127, 8659-8666.
  • 10McCormick, J. R.; Zhao, B.; Rykov, S. A.; Wang, H.; Chen, J. G. J. Phys. Chem. B 2004, 108, 17398-17402

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部