期刊文献+

用于超光滑表面加工的常压低温等离子体抛光系统设计 被引量:6

Design of the Atmospheric Pressure Low Temperature Plasma Polishing System for the Machining of Ultra-Smooth Surfaces
下载PDF
导出
摘要 介绍了一种新型超光滑表面加工方法及其系统的设计.该方法主要基于低温等离子体化学作用,通过活性反应原子与工件表面原子间的化学反应实现原子级的材料去除,避免了表层和亚表层损伤.该常压低温等离子体抛光系统首次引入了电容耦合式射频等离子体炬,并根据装置的实际特性进行了良好的阻抗匹配.原子发射光谱分析结果表明,该系统实现了稳定的大气压等离子体放电,并有效地激发出高密度的活性反应原子.针对单晶硅片的加工试验结果,也证明了该系统可高效稳定地工作,并实现了约1.46,mm3/min的材料去除速率和0.6,nm(Ra)的表面粗糙度. A novel precision machining method for ultra-smooth surfaces and the corresponding facilities were presented. This method utilizes the atmospheric pressure low temperature plasma to excite reactive gases in order to generate high density reactive radicals.Then the-radicals cause chemical reactions with the workpiece surface atoms producing volatile products,which performs the atom scale removal process.As the machining process is chemical in nature,this method avoids surface/subsurface defects.A self-fabricated system was built to implement this atmospheric pressure plasma polishing (APPP) method.And a capacitance coupling radio-frequency plasma torch was firstly introduced into the atmospheric pres- sure plasma polishing system.The analysis of atomic emission spectroscopy has demonstrated the validity of the system.Furthermore, the operations applied on silicon wafers also indicate that a removal rate of 1.46 mm^3/min and surface roughness of 0.6 nm ( Ra ) have been achieved.
出处 《纳米技术与精密工程》 EI CAS CSCD 2008年第3期222-226,共5页 Nanotechnology and Precision Engineering
基金 国家自然科学基金重点项目(50535020) 武器装备预研基金项目(9140A180202-06HT0132) 黑龙江省自然科学基金资助项目(E200622)
关键词 常压等离子体 超光滑表面 等离子体炬 电容耦合 抛光 atmospheric pressure plasma ultra-smooth surface plasma torch capacitance coupling polishing
  • 相关文献

参考文献7

  • 1[2]Wang L P,Wang X F,Tang B Y,et al.High duty,long lifetime,cathodic arc plasma source[J].Review of Scientific Instruments,2003,74(6):2983-2986.
  • 2[3]Mori Y Yamauchi K,Yamamura K,et al.Development of plasma chemical vaporization machining[J].Review of Scientific Instruments,2000,71(12):4627-4632.
  • 3[4]Park Jaeyoung,Henins I,Herrmann H W.Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source[J].Journal of Applied physics,2001,89(1):20-28.
  • 4[5]J Chen Zhiyu.Impedance matching for one atmosphere uniform glow discharge plasma (OAUGDP) reactors[J].IEEE Transactions on Plasma Science,2002,30(5):1923-1929.
  • 5[6]Bollinger L D,Steinberg G.Zarowing C B.Rapid optical figuring of aspherical surface with plasma-assisted chemical etching (PACE)[J].Large Optics Ⅱ:Proc SPIE,1992,1618:14-21.
  • 6[7]Yuzo Mori,Kazuya Yamamura.Thinning of silicon-on-insulator wafers by numerically controlled plasma chemical vaporization machining[J].Review of Scientific Instruments,2004,75(4):942-946.
  • 7[10]National Institute of Standards and Technology.NIST Atomic Spectra Database[EB/OL].http://physics.nist.gov/PhysRefData/ASD/index.html,2007-05-05.

同被引文献62

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部