摘要
一般测度空间(Ω,F,μ)已经有了其上可测函数的积分.在此基础上,把测度空间(Ω,F,μ)完备化而成为它的完备测度空间(Ω,F,μ),找到二者的关系.然后,给出完备测度空间上的可测函数积分的一种定义.且它与测度空间(Ω,F,μ)上的可测函数的积分是一致的.
Integral of measurable functions is defined on the common measurable space (Ω,F,μ). On this basis,the measurable space (Ω,F,μ) is completed with respect to measurable space (Ω,^-F,^-μ) ,and the relations between them is found. Then, the integral of measurable functions on the complete measurable space (Ω,^-F,^-μ) is defined. It is also consistent with that on measurable space (Ω,F,μ) .
出处
《甘肃联合大学学报(自然科学版)》
2008年第3期30-32,共3页
Journal of Gansu Lianhe University :Natural Sciences
关键词
完备化测度空间
可测函数
积分
complete measurable space
measurable function
integral