期刊文献+

费根鲍姆常数的实验测量

Measuring the Feigenbaum constant
下载PDF
导出
摘要 介绍了费根鲍姆常数及一种非线性混沌电路,利用该电路测量了费根鲍姆常数,并对测量结果进行处理和分析,对该实验提出了一些建议. The definition of Feigenbaum constant and a nonlinear circuit are presented, then the Feigenbaum constant is measured using the nonlinear circuit. The experimental data are processed'and analyzed, and some advices for the experiment are put forward.
作者 许成伟
出处 《物理实验》 2008年第5期34-36,共3页 Physics Experimentation
关键词 费根鲍姆常数 非线性电路 倍周期分岔 混沌 Feigenbaum constant nonlinear circuit period doubling bifurcation chaos
  • 相关文献

参考文献4

二级参考文献14

  • 1李潮锐,吴深尚.创新性《基础物理实验》教学模式[J].中山大学学报论丛,2003,23(3):1-5. 被引量:8
  • 2郝柏林.从抛物线谈起—混沌动力学引论[M].上海:上海科技教育出版社,1997..
  • 3Pecora L M, Carroll T L. Synchronization in chaotic system [J]. Phys. Rev. Lett, 1990,64(8):821.
  • 4Cuomo L M, Oppenheim A V. Circuit implementation of synchronized chaos with applications communications [J]. Phys. Rev. Lett, 1993,71:65.
  • 5Chen G, Dong X. On feedback control of chaotic continuous-time system [J]. IEEE Circuits Trans.Syst, 1993,40(9):591-601.
  • 6Hartley T T, Mossayebi F. On the control of an array Chua's systems[A]. IEEE Intern. Syrup. on Circuits Systems [C]. Seattle, 1995. 1 536-1 539.
  • 7Hartley T T, Mossayebi F. Matrix integrator for real-time simulation of singular systems [A]. Proc.of Amer. Control Conf. [C]. Pittsburgh, 1989.419-423.
  • 8Guemez J, Matias M A. Control of chaos in unidimensional maps [J]. Phys. Lett. A, 1993,181:29.
  • 9Matias M A, Guemez J. Stabilization of chaos by proportional pulses in the system variable [J].Phya. Rev. Lett , 1994,72:1 455.
  • 10吴振奎.漫话分形[J].中等数学,1998(3):30-32. 被引量:3

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部