期刊文献+

W-10%TiC复合材料的制备与力学性能研究 被引量:4

Study on Preparation and Mechanical Properties of W-10%TiC Composites
下载PDF
导出
摘要 采用高能球磨手段制备了W-10%TiC(质量分数,下同)纳米复合粉体,并采用热压方法烧结成致密块体,研究了高能球磨、烧结温度、烧结时间及烧结压力对复合材料致密度和力学性能的影响。结果表明:高能球磨后,复合粉体的颗粒形状近似球形,粒径均匀,平均粒径为100nm,并且纳米复合粉体的烧结温度大大降低,其原因是粉体的颗粒细小、扩散系数高、表面能高等性质及球磨过程中少量Fe,Ni杂质的引入。对所制备纳米粉体而言,较合适的烧结工艺为:1700℃,30MPa压力下烧结60min,在此工艺条件下制备的复合材料的致密度达到98.4%,抗弯强度和断裂韧性分别达到:681MPa,6.24MPa·m1/2。 W-10%TiC composites were prepared by high energy ball milling and vacuum hot-pressing (VHP) and sintering. The effects of high energy milling, sintering temperature, holding time and hot pressure on the composites were investigated. The results show that the nanocomposite powders with homogeneous particle size about 100 nm were obtained through high energy milling processing. The nanocomposite powders were consolidated to bulk with high density at low temperature, which was caused by the fine particles having high diffusion coefficient, high surface energy and the impurity of Fe, Ni introduced from the process of high energy milling. The relative density, flexural strength and fracture toughness of the composites prepared under the optimal condition 1700 ℃, 30 MPa for 60 min could reach to 98.6%, 681 MPa and 6.24 MPa·m^1/2, respectively.
出处 《稀有金属》 EI CAS CSCD 北大核心 2008年第2期151-155,共5页 Chinese Journal of Rare Metals
基金 合肥工业大学中青年创新群体基金资助项目(103-037016) 中国科学院等离子体物理研究所合作项目(103-413361)资助
关键词 高能球磨 热压 W-TiC 致密度 力学性能 high energy milling hot-pressing W-TiC density mechanical properties
  • 相关文献

参考文献8

二级参考文献48

  • 1J.Y. Zhang, Z.Y. Fu , W.M Wang , H. Wang and X.M. Min State Key Lab .of Advanced Technologyfor Materials Synthesis and Processing, Wuhan University of Technolo gy, Wuhan 430070 ,China.WETTABILITY BETWEEN TiB_2 CERAMIC AND METALS[J].Acta Metallurgica Sinica(English Letters),1999,12(4):395-400. 被引量:3
  • 2殷为宏.世纪之交我国的难熔金属加工业[J].第九届全国难熔金属学校流会文集,稀有金属材料与工程,1998,27:1-9.
  • 3[3]Hogwood M C, Bentley R. Tungsten Refractory Metal-1994,Proc. Int. Conf. 2nd [ C ]. New Jersey: Metal Powder International Federation, 1995. 37.
  • 4[4]Chaiat D, tmanas E Y, otman I. Effect of processing and alloying on microstructure and properties of tungsten heavy alloys [A].In: Bose A, Dowding R L. Tungsten Refract Met. Proc. Int.Conf-1994 [ C]. New Jersey: Metal Powder International Federation, 1995, 57.
  • 5[5]German R M. Grain agglomeration and coalescence in liquid phase sintering [A]. In: Terry M Cadle, K S Narasimhan. Advances in Powder Metallurgy & Particulate Materials-1996 [C].Princeton: Metal Powder Industries Federation, 1996, 3 ( 11).81.
  • 6[7]Ryu Ho J, Hong Soon H, Baek Woon H. Mechanical alloying process of 93W-5.6Ni-1.4Fe tungsten heavy alloy [J]. Journal of Materials Processing Technology, 1997, (63): 292.
  • 7[10]Sadangi R K, McCandlish L E, Kear B H, et al. Grain growth inhibition in liquid phase sintered nanophase WC/Co alloys [J].The Inter J. of Powder Metallurgy, 1999, 35 ( 1 ): 27.
  • 8[14]Haerdtle S T,Thomas Hug,Theodor Staneff.Taylor-made tungsten heavy alloys by solid state sintering of pre-alloyed powders and subsequent cold working [A]. In: Bose A, Dowding R L. Tungsten Refract Met. Proc. Int. Conf-1994 [C]. New Jersey: Metal Powder International Federation, 1995, 169.
  • 9[15]German R M,曲选辉译.粉末注射成形[M].长沙:中南大学出版社,2001.4.
  • 10[18]Fan Jinglian, Huang Baiyun, Qu Xuanhui, et al. Mim of Mechanically alloyed nanoscale W-Ni-Fe Powder [J]. The International Journal of Powder Metallurgy, 2002, 38(6): 56.

共引文献64

同被引文献81

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部