期刊文献+

基于整体变分和变换域分析的复合去噪模型 被引量:1

A Hybrid Denoising Model Basing On Total Variation and Analysis in Transform Domain
下载PDF
导出
摘要 本文在泛函空间理论基础上提出了一种整体变分与小波阈值萎缩复合的图像去噪模型。复合模型在小空间规整化约束下实现整体变分优化去噪,保持图像边缘特征减弱值阶跃现象;复合模型处理图像中不存在Gibbs现象且可应用于大噪声图像恢复缺失信息。DCT变换是一种表征图像纹理特征的变换域处理方式,本文最后将DCT变换引入复合模型,得到保持纹理特征的复合去噪模型。理论和实验证明了本文提出的模型在图像去噪中的有效性。 A novel hybrid denoising model which combines Total Variation and wavelet shrinkage basing on function space is proposed in this paper. The hybrid model denoises by minimizing Total Variation under the regularization constraint in small function space; it preserves edge feature and weakens staireasing. There is no Gibbs phenomenon in the denoised image and the novel model can restore lost information. DCT is used to characterize texture;it is introdueed into the hybrid model in this paper, and get another hybrid denoising model which preserves texture better. Both theoretical analysis and experiments have verified the validity of the new model.
出处 《信号处理》 CSCD 北大核心 2008年第2期277-280,共4页 Journal of Signal Processing
基金 国家973项目(2004CB318005) 国家自然科学基金(60472033) 教育部博士点基金(20030004023)
关键词 图像去噪 整体变分模型(TV) 小波阈值萎缩 DCT变换 特征保持 image denoising total variation (TV) wavelet shrinkage DCT feature preserving
  • 相关文献

参考文献12

  • 1A N Tikhonov, V. Y Arsenin. Solution of Ⅲ-posed Problems [ M ]. New York : Wiley, 1997.
  • 2A N Tikhonov. Regularization of incorrect posed problems. Soviet Math. Doklady, April. 1963,1624-1627.
  • 3A Chanmbolle, R A Devore. Nam-yong Lee, and Bradley J. Lucier, Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage[ J ]. IEEE Trans. Image processing, 1998,1 (3), 319-335.
  • 4G Aubert, P Kormprobst. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Varations[ J ]. Applied Mathematical Sciences, Springer- Verlag ,2001,147.
  • 5L Rudin, S Osher, E Fatemi. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992,60:259-268.
  • 6D L Donoho, I M Johnstone, G Kerkyacharian, and D Picard. Wavelet shrinkage : Asymptopia [ J ]. Journal of the Royal Statistics Society,Sieries B, 1995,57:301-369.
  • 7陈海峰,王伟.一种具有自适应阈值的小波收缩去噪方法[J].计算机仿真,2005,22(5):107-108. 被引量:3
  • 8查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 9J L Starek, M Elad, D L Donoho. Image decomposition via the combination of sparse representations and a variational approach [J]. IEEE Transactions on Image Progressing, 2005,14(10) : 1570-1582.
  • 10F Malgouyres. Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. Image processing, 2002,11 ( 12 ) : 1450-1456.

二级参考文献11

  • 1Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41:613 ~ 627.
  • 2Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[ J]. Biometrika, 1994,81: 425 ~ 455.
  • 3Chang S G, Yu B, Martin V. Adaptive wavelet thresholding for image denoising and compression [ J ]. IEEE Transactions on Image Processing, 2000,9 ( 9 ): 1532 ~ 1546.
  • 4Stein C M. Estimation of the mean of a multivariate normal distribution[ J]. Annual Statistical, 1981,9(6): 1135 ~ 1151.
  • 5Yang Dali, Xu Mingxing, Wu Wenhu, et al. A noise cancerlation method based on wavelet transform [ A ]. In: International Symposium on Chinese Spoken Language rocessing [ C ], Beijing, 2000: 211 ~214.
  • 6D L Donoho.Do-noising by Soft-Thresholding[J].IEEE Transactions on Information Theory,May 1995,41(3):613-627.
  • 7A Chambolle,R A Devore, N Lee and B J Lucier.Nonlinear Wavelet Image Processing:Variational Problems,Compression,and Noise Removal Through Wavelet Shrinkage[J].IEEE Transactions on Image Processing, March,1998,7(3):319-335.
  • 8H Krim,D Tucker and D L Donoho.On Denoising and Best signal Representation[J].IEEE Transactions on Information Theory,November 1999,45(7):2225-2237.
  • 9G P Nason.Wavelet shrinkage using cross-validation[J].Journal of the Royal Statistical Society Series B,58,1996.463-479.
  • 10C Taswell.The what,how,and why of wavelet shrinkage de-noising[J],Computing in Science & Engineering,May/June 2000,23:12-19.

共引文献51

同被引文献11

  • 1喻翔,彭其渊.公路路面检测技术的发展[J].交通标准化,2004,32(12):78-80. 被引量:24
  • 2张强,那彦,李建军.基于边缘几何特征和频域相关技术的图像匹配方法[J].应用光学,2006,27(4):285-288. 被引量:14
  • 3刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23
  • 4丁亚军,谢可夫.改进型中值滤波和形态学组合降噪方法[J].计算机与现代化,2007(2):41-42. 被引量:8
  • 5WU JIYING,RUAN QIUQI.An adaptive edge enhancing image denoising model based on fuzzy theory[C]//2007 Intelligent Signal Processing and Communication.Washington,DC:IEEE,2007:216-219.
  • 6闫茂德,伯绍波,李雪,等.一种自适应模糊的局部区域图像增强算法[C]//第26届中国控制会议论文集.北京:北京航空航天大学出版社,2007:308-311.
  • 7LI QINGQUAN,LIU XIANGIONG.Novel approach to pavement image segmentation based on neighboring difference histogram method[C]//2008 Congress on Image and Signal Processing.Washington,DC:IEEE,2008:792-796.
  • 8王强,王风.一种保持图像几何特征的去噪模型[C]//中国通信学会第五届学术会论文集.北京:电子工业出版社,2008:433-438.
  • 9FIORE L,COILSINI G,GEPPETTI L.Application of non-linear filters based on the median filter to experimental and simulated multiunit neural recordings[J].Journal of Neuroscience Methods,1996,70(2):177-184.
  • 10YIN L,YANG B,CABBOUJ M.Weighted median filters:a tutorial[J].IEEE Circuits and Systems Society,1996,43(3):157-192.

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部