摘要
该文在研究MIMO系统中相关信道下穷举搜索算法、盖尔圆算法等基础上,提出一种低复杂度盖尔圆算法。算法通过每次迭代中删除最小特征值所对应的列,来提高特征值的下界并减小天线间的相关性使得容量最大化或误码率最小化。理论分析和仿真结果表明,该算法在所选天线数目较多场合下具有较低的复杂度,同时其容量和误码性能优于基于范数最大的算法,接近最优穷举搜索算法。
This paper begins with the investigation on exhaustive search algorithm, the Gerschgorin circle algorithm, on the basis of which, a Gerschgorin circle with low complexity is presented. In the proposed algorithm, the column corresponding to the minimum eigen-value is eliminated to increase the lower bound of the eigen-values and to reduce the correlation between the antennas during each iteration, correspondingly, capacity is maxivaized or BER is minimized. The results of the research reveal that both the capacity and the BER performance of the proposed algorithm are better than that of the norm-based algorithm, and are close to the performance of the optimal exhaustive search algorithm with low complexity in the cases that more antennas are selected.
出处
《电子与信息学报》
EI
CSCD
北大核心
2008年第5期1193-1197,共5页
Journal of Electronics & Information Technology
基金
国家自然科学基金(60702060)
高等学校学科创新引智计划(B08038)
西安电子科技大学研究生院创新基金(创05014)资助课题
关键词
MIMO
相关信道
天线选择
盖尔圆
MIMO
Correlated channel
Antenna selection
Gerschgorin circle