期刊文献+

被动隔振的非线性动力学研究 被引量:5

Research on Nonlinear Dynamics of a Vibration-isolated Body
下载PDF
导出
摘要 研究了由基础振动激励的被动隔振体的非线性振动特性和振动稳定性。考虑隔振系统的非线性刚度和隔振材料的非线性阻尼,建立了被动隔振体的非线性动力学方程;用谐波平衡法研究了其非线性振动特性,导出了频率响应方程;讨论了非线性因素的影响;分析了隔振体振动的稳定性,得出了稳定区和不稳定区的分界线方程。 Seismic response characteristics and vibration stability of the body isolated by the resilient material with nonlinear stiffness and nonlinear damping were investigated herein. The nonlinear dynamics equation including nonlinear stiffness and damping was developed. The frequency response equation was derived and nonlinear dynamic response to a seismic excitation were analyzed by the method of harmonic balance. The effectness of nonlinear factors and vibration stability were studied. The conclusions of the paper are helpful to the accurate design and effect analysis of vibration isolators.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2008年第9期1022-1025,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50775070) 湖南省科技计划重点项目(05FJ2001) 湖南省自然科学基金资助项目(06JJ2021) 湖南省教育厅重点项目(06A018)
关键词 被动隔振 非线性振动 频率响应特性 稳定性 vibration isolation nonlinear vibration frequency response characteristic stability
  • 相关文献

参考文献5

二级参考文献13

  • 1张英会,弹簧手册,1997年,13页
  • 2Ertas A,Int J Nonlinear Mech,1990年,25卷,23期,241页
  • 3Ertas A, Chew E K. Non-linear dynamic response of a rotating machine[J]. International Journal of Non-linear Mechanics, 1990, 25(23) :241-251.
  • 4Mallik A K, Kher V, Puri M, el al. On the modelling of nonlinear elastomeric vibration isolators [ J ]. Journal of Sound and Vibration,1999, 219(2) :239-253.
  • 5Zaw,dney L D, Nayfeh A H, Sanchez N E. The response of a singledegree-of-freedom system with quadratic mid cubic non-lineafities to a principal parametric resonance [ J ]. Journal of sound and vibration,1989, 129(3) :417-442.
  • 6Peleg K. Frequency response of non - linear single degree of freedom systems[J]. International Jouranl of mechanical science, 1979, 21(1) :75-84.
  • 7Margallo J G, Bajarano J D. Stability of limit sycles and bifurcations of generalized Ven Der Pol Oscillators: x+Ax - 2Bx3 + ε ( z3 +z2x2 + z1 x4)x = 0, Int J Non-linear Mech. 1990, 25:663-675
  • 8Li L. Energy method for computing periodic solutions of strongly nonlinear systems ( Ⅰ ) -Autonomous Systems. Nonlinear Dynamics,1996,9:223-247
  • 9周一峰,谢柳辉,李骊.一类强非线性系统周期解的能量迭代法[J].应用力学学报,1997,14(4):26-30. 被引量:13
  • 10陈安华,钟掘.转子系统非线性振动的辨识建模[J].中国有色金属学报,1997,7(3):159-163. 被引量:5

共引文献35

同被引文献42

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部