期刊文献+

一种多样性引导的进化粒子滤波 被引量:2

Diversity-guided Evolutionary Particle Filter
下载PDF
导出
摘要 粒子滤波(PF)算法存在的主要问题是粒子退化现象,利用重抽样过程可以有效减轻退化现象,但带来了采样枯竭问题,导致滤波精度下降.本文提出一种多样性引导的进化粒子滤波(DEPF),把粒子群优化(PSO)算法引入到传统PF中,通过PSO搜索寻优重新分配粒子,使粒子的表示更加接近真实后验,并在PSO的搜索寻优过程中使用多样性引导机制来保证所得粒子集的多样性,以提高PF的精度.仿真实验结果表明了该算法的有效性. Degeneracy phenomenon is a main problem in particle filter (PF). Although the resampling process can be used to reduce the effects of degeneracy phenomenon,it produces the sample impoverishment problem which makes filter's performance worse. A diversity-guided evolutionary particle filter (DEPF) is proposed in this paper. To improve the performance of PF,particle swarm optimization (PSO) algorithm is introduced to form new particle filter ,in which the search and optimization ability of PSO are used to redistribute particles closer to the true posterior. Moreover,in the process of PSO,a diversity-guided mechanism is used to guarantee the diversity of particle set. The simulation results show the effectiveness of DEPF.
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第5期867-870,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60575023)资助 安徽省自然科学基金项目(070412064)资助 合肥工业大学校科学研究发展基金项目(070504F)资助
关键词 粒子滤波 采样枯竭 粒子群优化算法 多样性 particle filter sample impoverishment particle swarm optimization diversity
  • 相关文献

参考文献16

  • 1Gordon N J,Salmond D J,Smith A F M. A novel approach to nonlinear/non-gaussian bayesian state estimation[J]. Proc of Institute Electric Engineering, 1993,140(2) : 107-113.
  • 2Kotecha J H, Djuric P M. Gaussian particle filtering[J]. IEEE Transactions on Signal Processing, 2003,51 (10) : 2592-2601.
  • 3Arnaud D,Simon G, Christophe A. On sequential monte carlo sampling methods for bayesian filtering[J]. Statistics and Computing, 2000,10(3) :197-208.
  • 4Arulampalam M S,Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002,50(2), 174-188.
  • 5Belviken E, Acklam P J. Monte carlo filters for non-linear state estimation[J]. Automatica, 2001, 37(1) :177-183.
  • 6Doucet A, de Freitas J F G, Gordon N J. Sequential mate carlo methods in practice[M]. New York:Springer-Verlag, 2001.
  • 7Higuchi T. Monte carlo filtering using genetic algorithm operators [J]. Journal of Statistical Computation and Simulation, 1997, 59(1) 1-23.
  • 8Tito E A H, Vellasco M M B R, Pacheco M A C. Genetic particle filter:an evolutionary perspective of SMC methods[R]. Applied Computational Intelligence Laboratory, Dell. Eloctrical Engineering, Catholic University of Rio de Janeiro, 2002.
  • 9Eberhart R C, Kennedy J A. A new optimizer using particle swarm theory[C]. Nagoya, Japans Proceedings of the Sixth International Symposium on Micro Machinand Human Science, 1995,39-43.
  • 10Kennedy J, Eberhart R C. Particle swarm optimization[C]. Perth, Australia: Proceedings of IEEE International Conference on Neural Networks, 1995,1942-1948.

同被引文献14

  • 1杜正聪,唐斌,李可.混合退火粒子滤波器[J].物理学报,2006,55(3):999-1004. 被引量:23
  • 2邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 5Chert Zhe. Bayesian filtering: From Kalman filters to particle filters, and beyond[R]. Hamilton: McMaster University, 2003.
  • 6Vaswani N. Particle filtering for large dimensional state spaces with multimodal observation likelihoods[J]. IEEE Trans on Signal Processing, 2008, 56(2): 317-325.
  • 7Luo Cheng, Cai Xiongcai, Zhang Jian. Improved adaptive particle filter using adjusted variance and gradient data[C]. 2008 IEEE 10th Workshop on Multimedia Signal Processing. Cairns, 2008: 359-364.
  • 8Qi Cheng, Bondon E A new unscented particle filter[C]. IEEE Int Conf on Acoustics, Speech and Signal Processing. Las Vegas, 2008: 3417-3420.
  • 9Karnel H, Badawy W. Fuzzy-logic based particle filter for tracking a maneuverable target[J]. Proc of IEEE Int Symposium on Circuits and Systems. Kobe, 2005: 1537- 1540.
  • 10Frank Tompkins, Patrick J Wolfe. Baysian filtering on the stiefel manifold[R]. Cambridge: Harvard Universuty,2007.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部