期刊文献+

用于手写数字识别的改进模糊支持向量机 被引量:1

Improved Fuzzy Support Vector Machines for Hand-written Digit Recognition
下载PDF
导出
摘要 针对训练样本在训练过程中的不同作用和支持向量机在推广到多类问题时存在不可分区域,可构造两类模糊支持向量机,其分别克服了过学习问题和减少了不可分区域.构造两类问题和多类问题综合的改进模糊支持向量机并用于手写数字识别,训练时,其利用数据与其类中心的相对距离定义隶属函数,测试时,利用S.Abe定义的隶属函数判别其类别.实验结果表明,该学习机具有比传统支持向量机和模糊支持向量机更高的精度. According to the different pole of different training sample in training process and the unclassifiable regions that exist during extension process,two kinds of fuzzy support vector machines (FSVMs),which can overcome overfitting problem and reduce the unclassifiable regions,are constructed. The integration of two-class problem and multi-class problem FSVMs is proposed and used to the recognition of hand-written digit. During training process,the membership functions of two-class FSVMs are defined by using the distance between the training data points and their class center ,during decision process ,the membership functions of multi-class FSVMs defined by S. Abe are used to determine the class of testing data. The experiment results show that the improved learning machines can achieve the higher precision compared with the traditional SVMs and FSVMs
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第5期871-874,共4页 Journal of Chinese Computer Systems
基金 国家“九七三”计划项目(2004CCA02500)资助 国家自然科学基金项目(60572015)资助 校青年骨干教师计划项目(20060503)资助
关键词 支持向量机 模糊支持向量机 手写数字识别 隶属函数 support vector machines fuzzy support vector machines hand-written digit recognition membership function
  • 相关文献

参考文献5

二级参考文献15

共引文献76

同被引文献8

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部