期刊文献+

非线性规划的一个罚内点方法 被引量:2

A Penalty Interior-Point Method for Nonlinear Programming
下载PDF
导出
摘要 针对具有不等式约束的非线性规划,结合罚内点途径,且在牛顿法的基础上,提出一个算法.通过引入辅助变量松弛不等式约束,把约束集合转化为两个集合的交集:一个是容易计算内点的,另一个是简单线性的.这样就提出了解决此问题的一个新的障碍和罚函数方法且给出了其方法的一般收敛性结果.对接近度量和算法参数的选择途径也进行了研究,从而程序上保证了一旦障碍参数被更新,算法仅需要有限牛顿步就能达到近似中心.数值例子说明了方法的有效性. The paper presents an algorithm, combining the penalty and interior-point approaches for nonlinear programming with inequality constraints, based on Newton's method. By using an auxiliary variable to relax the inequality constraints, the constraint set is turned into an intersection of two sets: one of them has an easy computable interior, and the other one is simply affine linear. Then, a new combined barrier and penalty function approach is proposed to solve this problem. A general convergence result of our method is shown. The proximity measure and the algorithmic parameter selection issues are studied. The procedure thus ensures that it require only a finite number of Newton steps to reach an approximate center once the barrier/penalty parameter is updated. Numerical examples are presented to show the effectiveness of the method.
机构地区 上海大学数学系
出处 《数学年刊(A辑)》 CSCD 北大核心 2008年第2期151-158,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10771133) 上海市重点学科建设项目(No.J50101)资助的项目.
关键词 内点方法 障碍函数 罚函数 非线性规划 Inter-point method, Barrier function, Penalty function, Nonlinearprogramming
  • 相关文献

参考文献15

  • 1Nesterov Y. and Nemirovski A., Interior point ploynomial methods in convex programming [M]// SIAM Studies in Applied Mathematics, Philadelphia: SIAM Publications, 1994.
  • 2Zhang S., A new self-dual embedding method for convex programming [J], Journal of Global Optimization, 2004, 29:479-496.
  • 3Anstreicher K. M. and Voal J. P., On the convergence programming [J], Optimization Methods and Software, 1994, 3:273-283.
  • 4Chen B. and Harker P. T., A noninterior continuation method for quadratic and linear programming [J], SIAM Journal on Optimization, 1993, 3:503-505.
  • 5Gould N., Orban D., Startenaer A. and Toint P. L., Superlinear convergence of primaldual interior-point algorithms for nonlinear programming [J], SIAM Journal on Optimization, 2001, 11 (4):974-1002.
  • 6Shanno D. F. and Vanderbei R. J., Interior-point methods for nonconvex nonlinear programming,orderings and ligher-order methods [J], Mathematical Programming, 2000, 87B:303-316.
  • 7Wright S. J., Primal-Dual Interior-Point Method [M], Philadelphia: SIAM Publications, 1997.
  • 8Ye Y., Interior point algorithms: theory and analysis [M]//Wiley-Interscience Series in Discrete Mathematics and Optimization, New York: John Wiley and Sons, 1997.
  • 9Wright S. J., A superlinear infeasible-interior-poimt algorithm for monotone nonlinear complementarity problem [R], Technical Report MCS-P, 344-1292.
  • 10Monteoro R. C., Pang T. and Wang T., A positive algorithm for the nonlinear complementarity problem [R], Technical Report, Department of Systems and Industrial Engineering University of Arizona, Tucson, Arizona, 1992.

同被引文献13

  • 1叶留青,常兴邦,张曙光.非线性规划问题的全局最优解的充要条件及其算法模型[J].河南科学,2005,23(5):632-634. 被引量:2
  • 2孙焕纯,王跃方,柴山.多变量、多约束连续或离散的非线性规划的一个通用算法[J].应用数学和力学,2005,26(10):1168-1174. 被引量:6
  • 3杨叔子,吴波,李斌.再论先进制造技术及其发展趋势[J].机械工程学报,2006,42(1):1-5. 被引量:75
  • 4Chen Mingfei,Chen Yupin,Hsiao Wentse,et al.A scribing laser marking system using DSP controller[J].Optics and Lasers in Engineering,2008,46(5):410-418.
  • 5Zaili M A M,Kuppuswamy R,Harun H.Restoration of engraved marks on steel surfaces by etching technique[J].Forensic Science International,2007,171(1):27-32.
  • 6Nagalingam Sev V,Lin Grier C I.CIM-still the solution for manufacturing industry[J].Robotics and Computer-Integrated Manufacturing,2008,24(3):332-344.
  • 7Lee Shaolun.A decision support system for luggage typesetting[J].Expert Systems with Applications,2008,35(4):1620-1627.
  • 8Franois Clautiaux,Antoine Jouglet,Jacques Carlier,et al.A new constraint programming approach for the orthogonal packing problem[J].Computers & Operations Research,2008,35(3):944-959.
  • 9Birgin E G,Martínez J M,Nishihara F H,et al.Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization[J].Computers & Operations Research,2006,33(12):3535-3548.
  • 10Aryanezhad M B,Hemati Mohammad.A new genetic algorithm for solving nonconvex nonlinear programming problems[J].Applied Mathematics and Computation,2008,199(1):186-194.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部