期刊文献+

带粘性线性化BCL方程组的衰减估计 被引量:1

Decay Estimates of Solutions to the Linearized BCL System with Viscosity
下载PDF
导出
摘要 考虑三维空间R^3中水波的自由表面的运动,这里研究的方程组首先是由J.L.Bona,T.Colin和D.Lannes提出的BCL方程组.给出了带粘性的BCL方程组的线性化方程组解的长时间衰减估计,它们将在讨论非线性的带粘性的BCL方程组的整体适定性中起着关键作用. The motion of the free surface of water waves in R3 is considered. The equations studied in the present article, are firstly derived by J. L. Bona, T. Colin, D. Lannes, called BCL system. The decay estimates of the solutions to the linearized equations of BCL system with viscosity in large t are given and will be useful in discussing the global well-posedness of the nonlinear BCL system with viscosity.
作者 胡军其
出处 《数学年刊(A辑)》 CSCD 北大核心 2008年第2期159-178,共20页 Chinese Annals of Mathematics
关键词 水波方程 拟微分算子 衰减估计 Water wave equation, Pseudo-differential operator, Decay estimate
  • 相关文献

参考文献23

  • 1Wu Sijue, Well-posedness in Sobolev spaces of the full water wave problem in 2-D [J], Invent. Math., 1991, 130:39 -72.
  • 2Wu Sijue, Well-posedness in sobolev spaces of the full water wave problem in 3-D [J], J. Amer. Math. Soc., 1999, 12:445- 495.
  • 3Lannes David, Well-posedness of the water-waves equations [J], J. Amer. Math. Soc., 2005, 18:605 -654.
  • 4Bona J. L., Chen M. and Saut J. C., Boussinesq equations and other systems for small- amplitude long waves in nonlinear dispersive media, Ⅰ: derivation and linear theory [J], J. Nonlinear Sci., 2002, 12:283-318.
  • 5Bona J. L., Chen M. and Saut J. C., Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media,Ⅱ: the nonlinear theory [J], Nonlinearity, 2004, 17:925-952.
  • 6Boussineq J. V., Theorie generale des mouvements qui sont propages dans un canal retangulaire hrizontal [J], Comptes. Redus. Acad. Sci., 1871, 73:256-260.
  • 7Johnson, An modern introduction to the mathematical theory of the water waves [M]// Cambridge Texts In Applied Mathematics, Cambridge: Cambridge University Press, 1997.
  • 8Kaup D. J., A higher-order water-wave equation and the method for solving it [J], Progr. Theo. Phy., 1975, 54:396-408.
  • 9Whitham G. B., Linear and Nonlinear Waves [M], New York: Wiley, 1974.
  • 10Amick C. J., Regularity and uniqueness of solutions to the boussinesq system of equations [J], J. Differ. Equ., 1983, 54:231-247.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部