期刊文献+

已有降维方法的推广 被引量:1

Generalization of Some Dimension Reduction Methods
下载PDF
导出
摘要 SAVE,PHD和SIR_(Ⅱ)已被证明是有效的降维方法,这些方法基于下面的两个假设:线性条件和常数方差条件.但是,常数方差条件非常强.当常数方差不成立时,即使线性条件成立,SAVE,PHD和SIR_(Ⅱ)经常会找到中心空间之外的方向.通过去掉了常数方差条件,在较弱条件下推广了SAVE,PHD和SIR_(Ⅱ).从而使得在较弱的条件下,能得到中心空间的正确估计. SAVE, PHD and SIRII are proven effective methods in dimension reduction problems. These methods are based on two assumptions: linearity condition and constant covariance condition. However, constant covariance condition is very strict. In the situation where constant covariance condition fails, even if linearity condition holds, SAVE, PHD and SIRII often pick the directions which are outside of the CS. This paper removes the constant covariance condition and generalize SAVE, PHD and SIRII under weaker conditions. This generalization makes it possible to get the correct estimates of CS under weaker condition. Simulation results are reported.
出处 《数学年刊(A辑)》 CSCD 北大核心 2008年第2期231-240,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10771015)资助的项目.
关键词 降维空间 CS CMS SIR11 SAVE PHD Dimension reduction, CS, CMS, SIRII, SAVE, PHD
  • 相关文献

参考文献16

  • 1Cook R. D., Regression Graphics [M], New York: Wiley, 1998.
  • 2Cook R. D., On the interpretation of regression plots [J], J. Amer. Statist. Assoc., 1994, 89:177-189.
  • 3Cook R. D., Graphics for regressions with a binary response [J], J. Amer. Statist. Assoc., 1996, 91:983-992.
  • 4Cook R. D. and Li B., Dimension reduction for conditional mean in regression [J], Ann. Statist., 2002, 30:455-474.
  • 5Cook R. D. and Lee H., Dimension reduction in binary response regression [J], J. Amer. Statist. Assoc., 1999, 94:1187-1200.
  • 6Li K. C., Sliced inverse regression for dimension reduction [J], J. Amer. Statist. Assoc., 1991, 86:316-342.
  • 7Cook R. D., Principal Hessian direction revisited (with discussion) [J], J. Amer. Statist. Assoc., 1998, 93: 84-100.
  • 8Eton M. L., A characterization of spherical distributions [J], J. Mult. Anal., 1986, 20:272-276.
  • 9Cook R. D. and Weisberg S., Discussion of "Sliced inverse regression for dimension reduction " by K. C. Li [J], J. Amer. Statist. Assoc., 1991, 86:328-332.
  • 10Li K. C., On Principal Hessian directions for the data visualization and dimension reduction: another application of Stein's lemma [J], J. Amer. Statist. Assoc., 1992, 87:1025-1039.

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部