期刊文献+

R^n上一类半线性椭圆方程解的存在唯一性和渐近性质 被引量:7

The Existence Uniqueness and Asymptotic Properties of a Class of Semilinear Elliptic Equations
下载PDF
导出
摘要 用上下解方法和位势估计,研究Rn上具有次线性项加超线性项半线性椭圆方程给出了其有界正解的存在性、唯一性和渐近性质,其中为常数,参数. In this paper , using sub and supsolution mecthods and potential estimations, westudy following semilinear elliptic equation on RN with sublinear and suplinear nonlinearities:RNThe existence uniqueness and asymptotic properties of bounded positive solution are givcn,where l is a constant O is a paramcter.
出处 《数学物理学报(A辑)》 CSCD 北大核心 1997年第4期403-411,共9页 Acta Mathematica Scientia
基金 国家自然科学基金 浙江省自然科学基金
关键词 半线性 椭圆方程 下解 上解 牛顿位势 存在性 Semilinear elliptic equation,Subsolution, Supsolution, Newton potential
  • 相关文献

参考文献2

  • 1杨海涛,Appl Math JCU B,1997年,12卷,67页
  • 2Ding W Y,Arch Rat Mech Anal,1986年,91卷,288页

同被引文献22

  • 1朱熹平.R^N 上半线性椭圆型方程的多解性[J].数学学报(中文版),1989,32(1):20-34. 被引量:6
  • 2[6]Lair A V,Shaker A W.Classical and weak solutions of a singular semilinear elliptic problem[J].J Math Anal Appl,1997,211(2):371-385.
  • 3[7]Bachar IMED,Noutreddine Zeddine.On the existence of positive solutions for a class of semilinear elliptic equations[J].Nonlinear Analysis,2003,52(4):1239-1247.
  • 4[8]Naito M.A note on bounded positive entire solutions of quasilinear elliptic equations[J].Hiroshima Math J,1984,14(1):211-214.
  • 5[9]Kuwano N.On bounded positive entire solutions of quasilinear elliptic equations[J].Hiroshima Math J,1984,14(1):125-158.
  • 6[10]YAO Miao-xin.Positive solutions to singular semilinear elliptic equations of mixed type[J].Transations of Tianjin University,1995,1(1):38-41.
  • 7[11]Habib MAAGLI,Malek ZRIBI.Existence and estiments of solutions for singular nonlinear elliptic problems[J].J Math Anal Appl,2001,263(2):522-542.
  • 8[12]YANG Zuo-dong.Existence of positive bounded entire solutions for quasilinear elliptic equations[J].Applied Mathematics and Computation,2004,156(3):743-754.
  • 9[13]Naito M.A note on bounded positive entire solutions of semilinear elliptic equations[J].Hiroshima Math J,1984,14(1):211-214.
  • 10Patrizia Pucci, James Serrin, Zou Henghui. A strong maximum principle a compact support principle for singular elliptic inequalities. J Math Pures Appl, 1999,78:769-789

引证文献7

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部