摘要
该文借助于没有PS条件的翻山引理,并利用Sobolev嵌入的最佳达到函数,克服了由于Sobolev嵌入失紧性而带来的系列困难.证明了含临界增长的两类观调和方程边值问题非平凡解的存在性.
With the help of the Mountain-Pass Theorem lacking Palais-Smale compactnesscondition and by adoption of the best attained function of Sobolev embedding, the papersucessfully ovetcomes seria1 difficulties caused by lose of compactness due to Sobolev embed-ding and proves the existence of nontrivial solutions of two classes of critical biharmonic e-quations on boundary conditions.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1997年第4期452-465,共14页
Acta Mathematica Scientia
基金
国家自然科学基金
国家教委优秀青年教师基金
关键词
(PS)c条件
翻山引理
双调和方程
非平凡解
(PS)c condition, Mountain-Pass theorem, Best embedding constant, Biharmonic equations