期刊文献+

P型硅纳米板压阻特性的理论研究 被引量:2

A Theoretical Study of the Piezoresistivity of a p-Type Silicon Nanoplate
下载PDF
导出
摘要 考虑量子尺寸效应与自旋轨道耦合作用,从含有应变的6×6 Luttinger-Kohn哈密顿量出发,采用有限差分方法建立了p型硅纳米板的能带结构模型.基于硅纳米板压阻特性与其能带结构的相关性,采用改进的压阻理论定量分析了厚度、杂质浓度与温度对其压阻系数的影响.研究结果表明:量子尺寸效应强烈改变了硅纳米板的能带结构,是其压阻系数增大的主要因素,而自旋轨道耦合作用仅对含较高应变的硅纳米板的能带结构有较大影响;硅纳米板的压阻系数具有尺寸效应,随厚度减小而增大,随杂质浓度增加或温度升高而减小.在高简并条件下,硅纳米板的压阻系数与温度无关,完全由杂质浓度的大小控制;在非简并条件下,情况刚好相反.最后,利用施加应力前后空穴等能面形状的变化定性分析了硅纳米板压阻特性的起源. Based on the 6 × 6 Luttinger-Kohn Hamiltonian,including strain, and taking into account of the quantum-size effect and spin-orbit coupling,a band structure model for p-type silicon nanoplate piezoresistors is established using the finite difference meth- od. The effect of thickness, impurity concentration, and temperature on the piezoresistive coefficient of the silicon nanoplate was quantitatively investigated based on its dependence on the band structure. The results indicate that the effect of the quantum confinement of holes, which dramatically alters the band structure,enhances the piezoresistive coefficient of the p-type silicon nanoplate piezoresistors. The spin-orbit coupling,which changes the band-edge energies, plays a significant role in the high strained silicon nanoplates. The size-dependent piezoresistive coefficient of the p-type silicon nanoplate piezoresistors increases as the thickness decreases. The piezoresistive coefficient was also observed to decrease with increased impurity concentration and temperature. In the extreme degen- erate range,the piezoresistive coefficient is controlled only by the impurity concentration and becomes temperature-independent. In the nondegenerate range,the opposite phenomenon occurs. Furthermore, according to the form change of constant energy surfaces for heavy and light holes in the presence of stress,we qualitatively analyze the origin of the longitudinal piezoresistive effect in the silicon nanoplate.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第5期970-974,共5页 半导体学报(英文版)
基金 国家重点基础研究发展规划(批准号:2006CB300404) 国家高技术研究发展计划(批准号:2007AA64Z301)资助项目~~
关键词 能带结构 压阻特性 尺寸效应 自旋轨道耦合 silicon band structure piezoresistive quantum size-effect spin-orbit coupling
  • 相关文献

参考文献12

  • 1Smith C S. Piezoresistance effect in germanium and silicon. Phys Rev, 1954,94 : 42
  • 2Porter T L,Eastman M P,Pace D L, et al. Sensor based on piezoresistive microcantilever technology. Sensors and Actuators A, 2001,88:47
  • 3庄志伟,王喆垚,刘理天.表面应力测量SOI压阻悬臂梁传感器设计与优化[J].Journal of Semiconductors,2006,27(10):1844-1850. 被引量:1
  • 4Harley J A, Kenny T W. High-sensitivity piezoresistive cantilevers under 1000A thick. Appl Phys Lett, 1999,75:289
  • 5Toriyama T,Tanimoto Y,Sugiyama S. Single crystal silicon nanowire piezoresistors for mechanical sensors. J Microelectromech Syst, 2002,11 : 605
  • 6He R R, Yang P D. Giant piezoresistance effect in silicon nanowires. Nature Nanotechnology,200G, 1:42
  • 7Pramanik C, Banerjee S,Saha H,et al. Piezoresistivity of silicon quantum well wire. Nanotechnology, 2006,17 : 3209
  • 8Sun C T, Zhang H T. Size-dependent elastic moduli of platelike nanomaterials. J Appl Phys,2003,93 : 1212
  • 9Luttinger M,Kohn W. Motion of electrons and holes in perturbed periodic fields. Phys Rev, 1955,97 : 869
  • 10Chao C Y, Chuang S L. Spin-orbit-coupling effects on the valenceband structure of strained semiconductor quantum wells. Phys Rev B,1992,46:4110

二级参考文献24

  • 1Binnig G,Quate C F,Gerber C.Atomic force microscope.Phys Rev Lett,1986,56(9):930
  • 2Kim K H,Ko J S,Cho Y H,et al.A skew-symmetric cantilever accelerometer for automotive airbag applications.Sensors and Actuators A,1995,50(1/2):121
  • 3Lang H P,Baller M K,Berger R,et al.An artificial nose based on a micromechanical cantilever array.Analytica Chimica Acta,1999,393(1~3):59
  • 4Fritz J,Baller M K,Lang H P,et al.Translating biomolecular recognition into nanomechanics.Science,2000,288 (5464):316
  • 5Hafizovic S,Barrettino D,Volden T,et al.Single-chip mechatronic microsystem for surface imaging and force response studies.PNAS,2004,101(49):17011
  • 6Beroulle V,Bertrand Y,Latorre L,et al.Monolithic piezoresistive CMOS magnetic field sensors.Sensors and Actuators A,2003,103(1/2):23
  • 7Vancura C,Yue Li,Kirstem K U,et al.Fully integrated CMOS resonant cantilever sensor for biochemical detection in liquid environments.Solid-State Sensors,Actuators and Microsystems,Transducers' 05,2005:640
  • 8Harleya J A,Kenny T W.High-sensitivity piezoresistive cantilevers under 100nm thick.Appl Phys Lett,1999,75(2):289
  • 9Gotszalk T,Grabiec P B,Rangelow I W.A novel piezoresistive microprobe for atomic and lateral force microscopy.Sensors and Actuators A,2005,123/124(23):370
  • 10Tang Yuxing,Aslam D M,Wang Jianbai,et al.Study of polycrystalline diamond piezoresistive position sensors for application in cochlear implant probe.Diamond and Related Materials,2006,15(2/3):199

同被引文献8

  • 1郭成锐 林鸣谢.压阻式MEMS压力传感器的原理与分析.Component Application&Solutions,2007,07:69-71.
  • 2Ranjit Singh, Low Lee Ngo. A Silicon Piezoresistive Sensor[J]. IEEE Intemational Workshop, 2002,02 : 1453-1456.
  • 3R Linnemann, T. Goltszalk, L. Hadjiiski et ai. Characterization of a Cantilever with an Integrated Deflection Sensor[J]. The Solid Films, 1995 : 159-164.
  • 4Wortman, J. J. , and R. A. Evans. Young' s modulus, Shear Modulus,and Poisson's Ratio in Silicon and Germaniurn[J]. Journal of Applied Physics, 1965.36:153 -156.
  • 5Li Xinxin, Takahito Ono, Wang , YuelinMasayoshi Esashi. Study on Ultra-Thin Nems Cantilever High Yield Fabrication and Size-Effect on Young's Modulus of Silicon[C]//Las Vegas, USA, 2002 : 427-430.
  • 6He R R, Yang P D. Giant Piezoresistance Effect in Silicon Nanowires[J]. Nature Nanotechnology, 2006,1 : 42.
  • 7徐临燕,栗大超,胡小唐,黄玉波.基于原子力显微镜的纳米梁杨氏模量的测量[J].天津大学学报,2007,40(7):816-820. 被引量:9
  • 8张加宏,冒晓莉,刘清惓,顾芳,李敏,刘恒,葛益娴.Mechanical properties of silicon nanobeams with an undercut evaluated by combining the dynamic resonance test and finite element analysis[J].Chinese Physics B,2012,21(8):330-338. 被引量:2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部