期刊文献+

关于中间图补图的一个定理的简单证明(英文)

A Simple Proof of a Theorem on Complements of Middle Graphs
下载PDF
导出
摘要 对于图G ,定义它的中间图M(G)的顶点集为V(G)∪ E(G) ,顶点集中的两点x和y在M(G)中相邻当且仅当{x,y}∪ E(G)≠ ,并且x和y在G中相邻或者关联.在这篇文章中简化了下面这个最近已经得到的定理的证明,即一个图G的中间图M(G)的补图是哈密顿的当且仅当G不是星图,并且G不同构于{K1,2K1, K2, K2∪ K1, K3, K3∪ K1}中的任意一个图. For a graph G, the middle graph M(G) of G is the graph with vertex set V(G) ∪ E(G) in which the vertices .rand yare joined by an edge if (x,y)∪E(G)≠φ, and .rand yare adjacent or incident in G. In this note, we provide a simple proof for a theorem, recently obtained by An and Wu, which says that the complement of middle graph M(G) of a graph G is hamiltonian if and only if G is not a star and is not isomorphic to any graph in {K1.2K1,K2,K2∪K1,K2,K2∪K1).
出处 《新疆大学学报(自然科学版)》 CAS 2008年第2期127-130,共4页 Journal of Xinjiang University(Natural Science Edition)
基金 The research supported by NSFC(10601044) Scientific Research Foundation for Young Scholar of Xinjiang University
关键词 中间图 补图 哈密顿圈 Middle graph Complement Hamilton cycle
  • 相关文献

参考文献6

  • 1An X, Wu B, Hamiltonicity of complements of middle graphs[J]. Discrete Math, 2007, 307: 1178-1184,
  • 2Bondy J A, Murty U S R. Graph Theory with Applications [M]. American Elsevier, New York: Macmillan, London, 1976.
  • 3Chartrand G, Hevia H, Jarrett E B, Schultz M. Subgraph Distances in Graphs Defined by Edge Transfers[J]. Discrete Math, 1997, 170:63-79.
  • 4Hamada T, Yoshimura I. Traversability and connectivity of the middle graph of a graph[J]. Discrete Math, 1976, 14:247-255.
  • 5Harary F, Nash-Williams C St J A. On eulerian and hamiltonian graphs and line graphs[J]. Canad Math Bull, 1965, 8:701-709.
  • 6Wu B, Meng J X. Hamiltonian jump graphs[J]. Discrete Math. 2004, 289: 95-106.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部