期刊文献+

时滞泛函微分方程的某些稳定性定理 被引量:6

Some stability theorems for retarded functional differential equations
原文传递
导出
摘要 给出了时滞泛函微分方程的本解一致稳定性的新判据,V的上界可以是某些条件下的正函数;对于解的渐近性及渐近稳定性和一致渐近稳定性结出的判据,去掉了方程右端函数f的有界性假设,使V的上界容许是在某种条件下的常负函数,推广了J.KHale的结果,便于应用. In this paper, the authors investlgate uniform stability, asymptotic stability,and uniforrn asymptotic stability for the zero solution of retarded functional differential equations. Some well-known results for unlform stability, in which the derivative of Lyapunov functional V is required to be posltlve semi-definite, are generalized. The upper bound of V is allowed to be positive function under some conditions. The assumption of boundness for f(t,x1,) has been removed, and the upper bound of V is allowed to be negative semi-definite under some conditions for the study of asymptotic stability.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 1997年第6期652-658,共7页 Journal of Fudan University:Natural Science
关键词 时滞 泛函微分方程 李雅普诺夫泛函 稳定性 retarded functional differential equations uniform stability uniform asymptotic stability Lyapunov functional
  • 相关文献

参考文献1

  • 1廖晓昕,稳定性的数学理论及应用,1988年,20页

同被引文献20

  • 1邓祥周,田立新,段希波.能源价格的动态模型及分析[J].统计与决策,2007,23(2):9-10. 被引量:15
  • 2HUANG Wengang Stability of Equation x(t)+p(t)x(t)+q(t)x(t)=0[J]. Scientia Sinica, 1986(4) : 363 - 374.
  • 3HALE J K. Theory of funeitional differential equations[M]. New York:Springer-Verlag, 1977. 105-119.
  • 4HUANG Wengang. Stability of equations (t)+p(t)(t)+q(t)x(t)=0 [J].Scientia Sinica (Series A), 1986, XXIX(4):363-374.
  • 5HALE J K. Theory of functional differential equations[M]. New York:Springer-Verlag, 1977.
  • 6HUANG Wengang. Stability of equations (t) + p(t) (t) + q(t)x(t) = 0 [J]. Scientia Sinica (Series A),1986, X X I X (4):363~374.
  • 7SANSONE G,CONTI R. Nonlinear differential equations[M]. 黄启昌,金成桴,史希福译.北京:科学出版社,1983.509~510.
  • 8郑祖麻.泛函微分方程理论[M].合肥:安徽教育出版社,1994.
  • 9Jack. Hale.Theory of FunctionalDifferential Equations[]..1978
  • 10Huang,Wengang. SientiaSinicaSeries A . 1986

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部