期刊文献+

一个浮游生物的数学模型的全局稳定性(英文) 被引量:4

Global stability of a mathematical model of plankton
下载PDF
导出
摘要 考虑如下用来描述浮游动物-营养物相互作用时滞微分方程模型(dx(t))/dt=x(t)(α-bx(t) -c_sy(t)) +ry(t-T) ,dy(t)/dt=y(t)[(μx(t))/(k+x(t))-a-βy(t)] ,T≥0 ,其中,x(t)是营养物浓度,y(t)是浮游动物种群的度量,并且参数α,β,a,b,cs,k,r,μ为正常数.如果μ>a,α>cs(μβ-a)+μa-bka成立,则该系统的正平衡点是全局吸引的.也给出了正平衡点局部稳定的充分条件. The differential delay model, which is introduced to simulate zooplankton-nutrient interaction, of the form dx(t) /dt=x(t)a-bx(t)-c,y(t))+ry(t-T),dy(t)/dt=y(t)(μx(t)/k+x(t)-a-βy(t)),T≥0 is studied, where x ( t ) is the concentration of nutrient, y ( t ) is a measure of zooplankton population attime t and parameters α, β, a, b, c,, k, r,μ are positive constants. If ,μ 〉 a, and a 〉 cs(μ-a)/β+abk/μ-a hold, then the positive steady state of this system is globally attractive. Some sufficient conditions on local stability of the steady state of the model are given.
作者 李林 闫岩
出处 《中国科学院研究生院学报》 CAS CSCD 2008年第3期305-312,共8页 Journal of the Graduate School of the Chinese Academy of Sciences
关键词 时滞微分方程 全局稳定性 浮游动物模型 differential delay equations, global stability, zooplankton model
  • 相关文献

参考文献8

  • 1Arnold EM. On stability and periodicity in phosphorus nutrient dynamics. Quart Appl Math, 1980,38:139- 141.
  • 2Beretta E, Bischi GI, Solimano F. Stability in chemostat equations with delayed nutrient recycling. J Math Biol, 1991,85 : 99 - 111.
  • 3Bisehi GI. Effects of time lags on transient characteristic of a nutrient cycling model. Math Biosci, 1992,109 : 151 - 175.
  • 4Ruan SG. The effect of delays on stability and persistence in plankton models. Nonlinear Analysis, 1995,25:575 - 585.
  • 5Ruan SG. Oscillations in plankton models with nutrient recycling. J Theor Biol, 2001,208:15 - 26.
  • 6Cheng ST, Chen YL. The analysis of environment system. Beijing: Higher Education Press, 1990.
  • 7Hale JK. Theory of functional differential equations. New York: Springer-Verlag, 1977.
  • 8Kuang Y. Delay differential equations with applications in population dynamics. Boston: Academic Press, 1993.

同被引文献5

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部