摘要
考虑如下用来描述浮游动物-营养物相互作用时滞微分方程模型(dx(t))/dt=x(t)(α-bx(t) -c_sy(t)) +ry(t-T) ,dy(t)/dt=y(t)[(μx(t))/(k+x(t))-a-βy(t)] ,T≥0 ,其中,x(t)是营养物浓度,y(t)是浮游动物种群的度量,并且参数α,β,a,b,cs,k,r,μ为正常数.如果μ>a,α>cs(μβ-a)+μa-bka成立,则该系统的正平衡点是全局吸引的.也给出了正平衡点局部稳定的充分条件.
The differential delay model, which is introduced to simulate zooplankton-nutrient interaction, of the form dx(t) /dt=x(t)a-bx(t)-c,y(t))+ry(t-T),dy(t)/dt=y(t)(μx(t)/k+x(t)-a-βy(t)),T≥0 is studied, where x ( t ) is the concentration of nutrient, y ( t ) is a measure of zooplankton population attime t and parameters α, β, a, b, c,, k, r,μ are positive constants. If ,μ 〉 a, and a 〉 cs(μ-a)/β+abk/μ-a hold, then the positive steady state of this system is globally attractive. Some sufficient conditions on local stability of the steady state of the model are given.
出处
《中国科学院研究生院学报》
CAS
CSCD
2008年第3期305-312,共8页
Journal of the Graduate School of the Chinese Academy of Sciences
关键词
时滞微分方程
全局稳定性
浮游动物模型
differential delay equations, global stability, zooplankton model