期刊文献+

网格市场中基于成本计算的任务调度研究 被引量:1

A cost-computing based task scheduling in grid market
下载PDF
导出
摘要 现有网格环境中,在线调度策略主要着眼于资源的分配管理,往往以满足用户的各种资源请求为目的,而对于服务方关注不够.为增大服务方的收益,鼓励节点主动提供服务贡献资源,提出网格计算市场中基于成本计算的任务调度策略,根据用户提交任务的相关信息,计算接受任务的沉没成本和机会成本以决定是否接受任务,使得资源提供者和资源请求者都实现自身的经济目标,促使市场向健康稳定的方向发展.实验数据表明,该调度策略降低了服务方的成本,提高了服务方的收益,可以更有效的促使节点主动贡献自己的资源. In Grid environment, with a view to allocate and manage Grid resources, on-line schedulers aim at meeting all kinds of uses' resources requests, rather than paying enough attention to resources providers. In order to increase resources providers' profit and encourage sites to provide service actively, a cost-computing based task scheduling scheme is proposed, which calculates sunk cost and opportunity cost, based on relative information provided by users, to decide whether to accept the task, such that both resource providers and customers will achieve their economic goals, therefore, to promote the development of whole market more stably. The experiment shows that the scheduler reduces the cost of resources providers, increases their profit, and effectively encourages sites to offer more resources.
出处 《中国科学院研究生院学报》 CAS CSCD 2008年第3期379-385,共7页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 国家自然科学基金项目(60673172 60273041) 国家高技术研究发展计划(863)项目(2006AA01A110)资助
关键词 计算市场 在线调度 沉没成本 机会成本 收益 computing market, on-line scheduler, sunk cost, opportunity cost, profit
  • 相关文献

参考文献13

  • 1Foster 1, Kesselman C. Globus: A metaeomputing infrastructure toolkit. International Journal of Supercomputer Applications, 1997,11 (2) : 115 - 128.
  • 2Subramoniam K, Maheswaran M, Toulouse M. Towards a micro-economic model for resource allocation in grid computing systems, In: Proc of the 2002 IEEE Canadian Conf on Electrical & Computer Engineering. Manitoba: IEEE Press, 2002. 782 - 785.
  • 3Chun B. Market-based cluster resource managemen: [ Ph. D.thesis]. Berkeley: University of California. 2001.
  • 4Chun BN, Culler DE. User-centric performance analysis of market-based cluster batch schedulers. In: 2nd IEEE International Sympesiumon Cluster Computingand the Grid. 2002.
  • 5David Elrwin, Laura EGrit, Jeffrey S Chase. Balancing risk and reward in a market-based task service. Department of Computer Science Duke University, Durham, NC 27705, USA.
  • 6Cheng CY, Sourav Bhattacharya. Dynamic scheduling of real-time messages over an Optical Network. In: 6^th IEEE International Conference Computer Communications and Networks. Computer Science and Engineering Department Arizona State University, 1997.
  • 7Kamhing Ho, James H Rice, Jaideep Srivastava. Real-time scheduling of multiple segment tasks. In: 14^th IEEE Annual International Computer Software and Applications Conference. Department of Computer Science University of Minnesota Minneapolis, 1990.
  • 8Abbott R, Garcia-Molina H. Scheduling real-time transactions: A performance evaluation. ACM Transactions on Database Systems, 1992,17(3) : 513 - 560.
  • 9Sgall J. On-line scheduling a survey. In: AW Fiat GJ, Editor. Lecture Notes in Computer Science. Online Algorithms: The State of the Art, 1998. 196 - 231.
  • 10Buyya R, Murshed M. GridSim: A toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing concurrency and computation. Practice and Experience, 2002,14( 13-15 ) : 1175 - 1220.

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部