期刊文献+

小波分析在超声信号采集消噪中的应用 被引量:2

Application of wavelet analysis in de-noising of ultrasonic signal acquisition
下载PDF
导出
摘要 在使用超声波探伤设备进行探伤过程中,为了抑制噪声信号对缺陷识别和判断带来的影响,采用小波分析的方法,利用Daubechies小波家族的db2做小波函数,借助于小波变换的时-频局部分析特性,对超声波回波信号进行了多分辨率分析.在每一阶设定不同噪声阈值,对输入信号进行噪声去除,并进行信号重建.实验证明,使用该方法能够有效地实现对超声波回波信号的噪声抑制,提高超声波的探伤精度. Noise signal will affect the identification and discrimination of defects during inspection using ulotrasonic detection equipment.For constraining the influence of noise signal,wavelet transform approach was adopted.The db2,belonging to the Daubechies wavelet family,was employed as wavelet function.Using the time-frequency part analysis characteristic provided by wavelet transform,the multi-resolution analysis of ultrasonic echo signal was performed.The input signal was de-noised by setting different noise threshold in every order,and then the signal was rebuilt.The experiments prove that the noise in ultrasonic echo signal can be effectively restrained and the accuracy of ultrasonic inspection can be improved using the proposed method.
出处 《沈阳工业大学学报》 EI CAS 2008年第2期195-198,211,共5页 Journal of Shenyang University of Technology
基金 国家自然科学基金仪表专项基金资助项目(60327001)
关键词 小波变换 超声波 信号重建 阈值 噪声 wavelet transform ultrasonic signal signal rebuilding threshold noise
  • 相关文献

参考文献7

二级参考文献21

  • 1Mallat S.. Multiresolution approximation and wavelet orthornormal bases of L^2 [J] . Trans Amer Math Soc, 1989, 315(1): 69-87.
  • 2Mallat S., Zhong S.. Characterization of signals from multiscale edges[J]. IEEE Trans PAMI, 1992, 14(7): 710 -717.
  • 3Donoho D. L.. De- noising via soft- thresholding,http://www.star. stanford, edu/- donoho/Reports/index.html, 1992.
  • 4崔锦泰[美] 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 5Tian Q,IEEE Trans UFFC,1998年,45卷,1期,251页
  • 6Tian Q,IEEE Trans UFFC,1995年,42卷,6期,1076页
  • 7ERGUN E. Second generation wavelet transform-based pitch period estimation and voiced/unde-cision for speech signals[J]. Applied Acoustics,2003,64:25-41.
  • 8SWELDENS W. The lifiting scheme:A custom-design construction of biorthogonal wavelets[J]. Appl Comput Harmon Anal, 1996,3:186-200.
  • 9SWELDENS W. The lifiting scheme:A construction of second generation wavelets[J]. SIAMJ Math Anal, 1997, 29:511-546.
  • 10DAUBECHIES I, SWELDENS W. Factoring wavelt transforms into lifting steps[J]. J Fourier Anal Appl,1998,4:247-269.

共引文献64

同被引文献16

  • 1McSweeney S G, Wright W M D. Adaptive IIR filtering algorithms for enhanced CMUT performance [C]// IEEE Ultrasonics Symposium (IUS). Piscataway, NJ= IEEE Press, 2010.- 2036- 2039.
  • 2Mallat S. A theory for multiresolution signal decomposition: The wavelet representation [J]. IEEE Trans Pattern Anal and Machine Intell, 1989, 11(7) : 647 - 693.
  • 3LE Bo, LIU Zhong, GU Tianxiang. Weak LFM signal dectection based on wavelet trans[orm modulus maxima denoising and other techniques [J]. International Journal of Wavelets Multiresolution and Information Processing, 2010, 8(2) : 313 - 326.
  • 4Wood J C, Johnson K M. Wavelet packet denoising of magnetic resonance images: Importance of Rician noise at low SNR [J]. Magnetic Resonance in Medicine, 1999, 41(3).- 631 - 635.
  • 5Donoho D L. De-noising by soft-thresholding [J]. IEEE Transactions on Information Theory, 1995, 41(3): 613 -627.
  • 6ZHANG Zhen, XUE Tao. Application of a modified algorithm for wavelet threshold de noising based on the ultrasonic signal of optical fiber defect [C]// Proceedings of the 2009 2nd International Congress on Image and Signal Processing (CISP). Piscataway, NJ: IEEE Press, 2009.
  • 7LI Jian, SUN Caixin, YANG Ji. Adaptive de noising for PD online monitoring based on wavelet transform [C]// Proceedings of the IEEE Southeast Conference 2006. Piscataway, NJ: IEEE Press, 2006: 71- 74.
  • 8LIU Wenfeng, LIU Jiannan, WANG Boxiong, et al. An ultrasonic ranging system with large sensing range and high accuracy [C]// Proceedings of 9th International Symposium on Test and Measurement(ISTM). Suzhou, 2011.
  • 9CHEN Yuan, MA Hongwei. Signal de noising in ultrasonic testing based on stationary wa,,elet transform [C]// 2009 WRI Global Congress on Intelligent Systems (GCIS 2009). Piscataway, NJ: IEEE Press, 2009: 474-478.
  • 10毛秉毅.基于分离谱技术的自适应带通滤波法在超声检测中的应用[J].仪器仪表学报,2007,28(11):2108-2112. 被引量:7

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部