期刊文献+

植物转录抑制子的结构特征及其作用机理 被引量:6

Structural Features and Action Mechanisms of Plant Transcriptional Repressors
下载PDF
导出
摘要 转录因子依转录调控能力可分为激活子和抑制子。植物转录抑制蛋白的分类依据很多,从作用方式上可分为主动抑制子和被动抑制子两大类;根据与DNA结合的方式则可分为锌指类、MYB类、AP2/EREBP类、bHLH类和bZIP类等。植物主动抑制子通过其含有的抑制域对转录直接起抑制作用。抑制域又可分很多类,但多数为含有类似EAR基序的保守性基序,其上具有几个保守性亮氨酸残基。植物转录抑制子主要通过对激活子或基本转录复合物产生作用及改变染色体结构3种方式来抑制目标基因的转录。有关植物转录抑制子的研究虽很欠缺,但以拟南芥SUPERMAN等抑制子的EAR基序为代表的研究表明,抑制域是阐明植物转录抑制子功能和下游基因表达调控机理的核心对象,而融合抑制子沉默技术(CRES-T)也为人为调控基因沉默带来了新的技术手段。 Transcription factor can act as an activator or a repressor. Although multiple standards can be used to classify plant repressors, repressors can be primarily divided into active and passive repressors according to their action mechanism. Like activators, repressors also possess various DNA binding domains such as zinc-finger, MYB, AP2/EREBP, bHLH, and bZIP domains. Plant active repressors directly repress transcription via their repression domains. Different types of repression domains exist, but most of them contain EAR or EAR-like motifs that harbor several conservative leucine residues. Plant repressors repress transcription of target genes by interacting with activators, acting on the basal transcription-factor complex or remodeling chromosome structures. Study of plant repressors is insufficient, but characterization of EAR motifs of repressors such as Arabidopsis SUPERMAN suggests that repression domains are core targets for elucidating the functions of plant repressors and the expression regulation mechanisms of their downstream genes. Chimeric repressor silencing technology (CRES-T) also provides a new method for artificial silencing of plant regulatory genes.
作者 杜娟 柴友荣
出处 《植物学通报》 CSCD 北大核心 2008年第3期344-353,共10页 Chinese Bulletin of Botany
基金 863计划(No.2006AA10Z110) 重庆市自然科学基金重点项目(No.8446)
关键词 EAR基序 植物 抑制域 抑制子 转录因子 EAR motif, plants, repression domain, repressor, transcription factor
  • 相关文献

参考文献7

二级参考文献75

  • 1Conner J, Liu Z, 2000. LEUNIG, a putative transcriptional co-repressor that regulates AGAMOUS expression during flower development. Proc Nat Acad Sci USA, 97: 12902- 12907.
  • 2Deyholos M K, Sieburth L E, 2000. Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell, 12: 1799~ 1810.
  • 3Drews G N, Bownmn J L, Meyerowitz E M, 1991. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell, 65:991 ~ 1002.
  • 4Edmondson D G, Smith M M, Roth S Y, 1996. Repression domain of the yeast global repressor Tupl interacts directly with histones H3 and H4. Genes Dev, 10:1247 ~ 1259.
  • 5Franks R G, Liu Z, 2001. Floral homeotic gene regulation. Horticultural Reviews, 27:41 ~ 77.
  • 6Franks G R, Wang C, Levin J Z, Liu Z, 2002. SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development, 129 : 253 ~ 263.
  • 7Hartley D A, Preiss A, Artavanis-Tsakonas S, 1988. A deduced gene product from the Drosophila neurogenic locus, enhancer of split, shows homology to mammn]ian G-protein beta subunit. Cell, 55:785 ~ 795.
  • 8Honma T, Goto K, 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409:52.5 ~ 529.
  • 9Jofuku D, den Boer B, van Montagu M, Okamuro J, 1994. Control of Arabidopsis flower and seed development by the homeotie gene APETAL42. Plant Cell, 6:1211 ~ 122.5.
  • 10Jurata L W, Gill G N, 1997. Functional analysis of the nuclear LIM domain interactor NLI. Mol Cell Biol, 17: 5688- 5698.

共引文献284

同被引文献47

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部