期刊文献+

基于单元区域的高维数据聚类算法 被引量:1

Clustering Algorithm of High-dimensional Data Based on Unit Region
下载PDF
导出
摘要 提出一种高维数据集合聚类算法(CAHD)。采用双向搜索策略在指定的n维空间或其子空间上发现数据点密集的单元区域,采用逐位相与的方法为这些密集单元区域聚类。双向搜索策略能够有效地减少搜索空间,提高算法效率,聚类密集单元区域只用到逐位与和位移2种机器指令。实验结果表明,在发现的类数量相同的情况下,CAHD算法的运行时间比其他算法减少30%。 This paper proposes a Clustering Algorithm of High-dimensional Data(CAHD). Unit regions with intensive data points are found by employing the two-way search strategy in the designated n-dimensional space or its subspaces, and these intensive modules are clustered by a case-by-phase approach, Two-way search strategy can effectively reduce the search space, improve the efficiency of algorithms, and cluster intensive regional unit only uses one by one with two machines and displacement direction. Experimental results show that the running time CAHD algorithm spent is 30% less than other algorithms with the same number of categories found.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第10期101-102,107,共3页 Computer Engineering
基金 国家科技攻关计划基金资助项目(2002BA901A02) 湖北省科技攻关基金资助项目(2004AA210B01)
关键词 聚类算法 高维数据 单元 clustering algorithm high-dimensional data unit
  • 相关文献

参考文献3

  • 1Schfitze H,Silverstein C.Projections for Efficient Document Clustering[C]//Proceedings of SIGIR'97.New York,USA:ACM Press,1997.
  • 2Agrawal R,Imielinski T,Swami A N.Mining Association Rules Between Sets of Items in Large Databases[C]//Proceedings of SIGMOD'93.New York,USA:ACM Press,1993.
  • 3Ester M,Kriegel H P,Sander J.et al.A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proceedings of KDD'96.Menlo Park,USA:AAAI Press,1996.

同被引文献7

  • 1杨颖,韩忠明,杨磊.兴趣子空间挖掘算法在高维数据聚类中的应用[J].计算机工程,2007,33(2):12-14. 被引量:3
  • 2顾耀林,吉晓娟.基于时间延迟的矢量场可视化方法的应用研究[J].计算机工程,2007,33(2):186-188. 被引量:5
  • 3Donoho D L. Aide Memoire, High-dimensional Data Analysis: The Curses and Blessings of Dimensionality[EB/OL]. (2000-08-12). http://www.stat.stanford.edu/-donoho/Lectures/AMS2000/Curses.pdf.
  • 4Keim D A. Information Visualization and Visual Data Mining[J]. IEEE Transactions on Visualization and Computer Graphics, 2002, 6(1): 59-78.
  • 5Duda R O, Hart P E, Stork D G. Pattern Classification[M]. 2nd ed. Hoboken, NJ, USA: John Wiley and Sons Inc., 2001.
  • 6Hoffman P, Grinstein G. Dimensional Anchors: A Graphic Primitive for Multidimensional Multivariate Information Visualizations[C]// Proc. of NPIVM'99. Missouri, USA: [s. n.], 1999: 9-16.
  • 7Levina E, Bickel P J. Maximum Likelihood Estimation of Intrinsic Dimension[J]. Advances in Neural Information Processing Systems, 2005, (17): 777-784.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部