期刊文献+

超视距多目标攻击排序问题的蚁群算法 被引量:2

Ant Colony Algorithm for Solving Scheduling Problem in Multi-targets Attacking
下载PDF
导出
摘要 针对现代超视距空战的指挥决策问题,提出一种基于蚁群算法思想的超视距多目标攻击的优化排序方法。该方法利用蚁群算法的并行计算和全局快速搜索能力,使超视距多目标攻击排序算法能够在限定时间内获得满意解,并给出应用该方法的具体实现步骤。仿真实验说明了该算法的有效性,特别当问题规模较大时,该算法具有较快的收敛速度和较高的精度。 Aiming at the command and decision-making problem in Beyond Visual Range Air Combat (BVRAC), an optimal scheduling method of multi-targets BVR attacking based on ant colony algorithm is put forward. By applying the good parallel computing and fast global searching capabilities of ant colony algorithm, it makes the constructed scheduling method of multi-targets BVR attacking, which can obtain satisfaction solution to the problem in real time. The implement process is given. Simulation result shows that the method is effective, especially for large scale scheduling problem, and has faster constringency rate and higher precision.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第10期158-160,共3页 Computer Engineering
基金 国家"863"计划基金资助项目
关键词 多目标攻击 排序问题 蚁群算法 multi-targets attacking scheduline oroblem ant colony aleorithm
  • 相关文献

参考文献7

  • 1Austin F,Lewis M.Automated Maneuvering Decision for Air-to-Air Combat[EB/OL].(2004-03-02).http://www.go.com/.
  • 2Hague D S.Multiple-tactical Aircraft Combat Performance Evaluation System[EB/OL].(2005-06-02).http://www.go.com/.
  • 3Coleman N,Papanagopoulos G.Advanced Mine-to-target Assignment Algorithms and Simulation[EB/OL].(2002-08-01).http://www.go.com/.
  • 4高坚,佟明安.超视距多目标攻击排序及火力分配建模与解算[J].火力与指挥控制,2004,29(3):9-12. 被引量:22
  • 5Dorigo M,Maniezzo V,Colomi A.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems,Man and Cybernetics,1996,26(1):29-41.
  • 6朱宅鎏,朱荣昌,熊笑非.作战飞机效能评估[M].北京:航空工业出版社,1993.
  • 7黄树采,李为民.目标分配问题的蚁群算法研究[J].系统工程与电子技术,2005,27(1):79-80. 被引量:41

二级参考文献9

共引文献58

同被引文献18

  • 1舒培贵,娄寿春,邬爱玉.防空导弹混编火力群目标分配工程算法研究[J].现代防御技术,2008,36(5):66-71. 被引量:3
  • 2程红熙,任忠斌,何清华.马尔可夫决策过程在动态WTA中的应用[J].电光与控制,2005,12(1):83-85. 被引量:1
  • 3王祖典.网络中心制导技术[J].电光与控制,2005,12(4):38-39. 被引量:12
  • 4王剑飞,武文军,范月强,杨信兵.“网络中心战”中的美国海军C^4ISR系统效能评估[J].情报指挥控制系统与仿真技术,2005,27(5):15-20. 被引量:6
  • 5Dorigo M, Maniezzo V, Colorni A. The ant system: optimiza tion by a colony of cooperating agents[J]. IEEE Trans. on Sys terns, Man, and Cybernetics & Part B, 1996, 26(1) : 29 - 41.
  • 6Dorigo M, Blum C. Ant colony optimization theory: a survey[J].Theoretical Computer Science, 2005, 344(2 - 3): 243 - 278.
  • 7Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behavior[J].Nature, 2000, 406:39 -42.
  • 8Dorigo M. Caro G Di. The ant colony optimization meta-heuristic: new ideas in optimization[M]. Maidenhead: McGraw-Hill Ltd., 1999:24-68.
  • 9Schoonderwoerd R, Holland O, Bruten J, et al. Ants for load balancing in telecommunication networks[R]. Bristol, U K: Hewlett Packard Lab.,1996 : 10 - 55.
  • 10Stutzle T, Hoos H H. Max-min ant system[J]. Future Generation Computer Systems, 2000, 16(9):889 - 914.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部