期刊文献+

Pt的含量对[Fe/Pt]_n多层膜磁性能的影响

The influence of Pt content on magnetic properties of [Fe/Pt]_n multilayer films
下载PDF
导出
摘要 采用射频磁控溅射的方法,在玻璃基片上制备了不同膜层结构的[Fe/Pt]n多层膜,经不同温度真空热处理后,得到L10有序结构的FePt薄膜。实验结果表明,[Fe/Pt]n多层膜结构可以有效降低FePt薄膜的有序化温度,350℃退火30min后其平行膜面矫顽力可达1.6×105A/m;多层膜结构中,Pt层厚度与Fe层厚度相同时,矫顽力最大,当Fe、Pt层厚度比偏离1∶1时,在Fe/Pt接触处易产生Fe3Pt和FePt3软磁相;Pt层和Fe层厚度相等且总厚度相同的情况下,Fe、Pt单层厚度越薄,有序化温度越低,且对应的矫顽力大。 The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after the as-deposited samples were subjected to vacuum annealing at various temperatures. Results show that the [Fe/Pt]n multilayer structure can effectively reduce the ordering temperature of FePt film, and the in-plane coercivity of [Fe(5.2nm)/Pt(5.2nm)]7 multilayers can reach 1.6×10^5A/m after annealed at 350℃ for 30min. When Fe and Pt layer thickness is equal, the coercivity of the film is the largest. On the other hand, the different Fe-Pt crystalline phases such as Fe3Pt and FePt3 phases are formed when the thickness ratio of Fe/Pt deviates from one after annealing. When Fe and Pt have the same thickness, the thinner single layer gets the lower ordering temperature and the larger coercivity.
出处 《功能材料》 EI CAS CSCD 北大核心 2008年第5期744-746,750,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(60571010) 国家自然科学基金重大资助项目(60490290)
关键词 L10-FePt薄膜 多层膜结构 矫顽力 有序化温度 L10-FePt thin films multilayer structure coercivity ordering temperature
  • 相关文献

参考文献21

  • 1Thiele J U, Folks L, Tone M F, et al. [J]. J Appl Phys, 1994, 84:5686.
  • 2Shima T, Moriguchi T, Mitani S, et al. [J]. Appl Phys Lett, 2002, 80(2): 288.
  • 3Wei D H, Chou S C, Chin T S, et al. [J]. J Appl Phys, 2005, 97: 10N120.
  • 4Endo Y, Kikuchi N, Kitakami O, et al. [J]. J Appl Phys, 2001, 89(11):7065.
  • 5Sellmyer D J, Luo C P, Yan M L, et al. [J]. IEEE Trans Magn, 2001, 37.1286-1291.
  • 6Chou S C, Yu C C, Liou Y, et al.[J]. J Appl Phys, 2004, 95 : 7276-7278.
  • 7Rong C B, Li Y, Liu J P, et al. [J]. J Appl Phys, 2007, 101,09k505.
  • 8Zotov N, SaVan A, et al. [J]. J Appl Phys, 2006, 100. 073517.
  • 9Endo Y, Oikawa K, et al.[J]. J Appl Phys, 2003, 94: 7222.
  • 10Takahashi Y K, Ohnuma M, Hono K. [J]. J Magn Magn Mater, 2002, 246.259-265.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部