期刊文献+

一种基于取向估计的关键点检测算法 被引量:1

A key point detection algorithm based on orientation estimation
下载PDF
导出
摘要 主观轮廓是一种重要的视觉心理现象,体现了人类视觉惊人的感知修复能力。针对主观轮廓处理过程中提取轮廓特征的特定需求,提出了一种基于取向估计的关键点检测算法。该算法在对边缘提取和对边缘点进行取向估计的基础上,通过对取向张量进行特征值分解获得各边缘点的各向异性信息,然后通过局部极值搜索和取向差验证提取出角点和边缘独立端点,从而对这两类关键点进行了一体化的处理。实验结果表明,该算法能比较有效地提取出主观轮廓后续处理所需要的两类关键点。 Subjective recognition of contour figures is an intrinsic capability of human vision and an important visual psychological phenomenon. Considering the extraction of contour features during subjective contour processing, we put forward an algorithm to detect key points based on orientation estimation. The algorithm processes two kinds of key points incorporately on the basis of edge detection and edge orientation estimation. It extracts anisotropic information of edge points through eigenvalue decomposition. Then the local maximum and minimum eigenvalue are searched out and marked as key point candidates, the orientation difference is used to verdict these candidates. Experimental results showed that this approach is efficient in detecting the comers and end points in subjective contour figures.
出处 《电光与控制》 北大核心 2008年第6期33-36,共4页 Electronics Optics & Control
关键词 主观轮廓 取向估计 张量 关键点检测 subjective contour orientation estimation tensor key point detection
  • 相关文献

参考文献9

  • 1吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24(1):18-46. 被引量:250
  • 2赵滨江.论网络中心战[M].北京:解放军出版社,2004.
  • 3李德毅,王新政,胡钢锋.网络化战争与复杂网络[J].中国军事科学,2006,19(3):111-119. 被引量:58
  • 4NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review,2003,45(2) : 167-256.
  • 5ALBERT R, BARABASI A L. Statistical mechanics of complex networks[J]. Reviews of Modem Physics,2002,74:47-97.
  • 6马骏,唐方成,郭菊娥,席酉民.复杂网络理论在组织网络研究中的应用[J].科学学研究,2005,23(2):173-178. 被引量:58
  • 7ALBERT R, BARABASI A L. Emergence of Scaling in random networks [J]. Science, 1999,286(5439) :509-512.
  • 8WATTS D J, STROGATZ S H. Collective dynamics of small- world networks[ J ]. Nature, 1998,393 ( 6684 ) : 440-442.
  • 9ALBERT R,JEONG H,BARABASI A L.Attack and error tolerance in complex networks[J] .Nature,2000,406:387-482.

二级参考文献20

  • 1吕金虎.复杂动力网络的数学模型与同步准则[J].系统工程理论与实践,2004,24(4):17-22. 被引量:40
  • 2M E J Newman, D J Watts. Scaling and percolation in the small-world network model [ J]. Phys Rev, 1999,60:7332-7342.
  • 3X F Wang, G R Cheng. Complex networks: small world,scale-free world and beyond [ J]. IEEE Circuits and Systems Magazine, 2003, 3: 6- 19.
  • 4J Lu, X Yub, et al. Chaos synchronization of general complex dynamical networks [ J ]. Physica A, 2004,334:281 -302.
  • 5Miles R E, Snow C C. Organizations: New concepts for new forms [ J]. California Management Review, 1986,28:62-73.
  • 6Miles R E, Snow C C. Causes of failure in network organizations [ J ]. California Management Review, Summer, 1992, 24:53 -72.
  • 7Youmin Xi, Fangcheng Tang. Multiplex multi-core pattern of network organizations: An Exploratory Study[ J]. Computational and Mathematical Organization Theory, 2004, 10(2) : 179 - 195.
  • 8P Erdos, A Renyi. On the evolution of random graphs[J]. Publ Math Inst Hungar Acad Sci, 1960, 5:17 -61.
  • 9Reka Albert, Albert-Laszlo Barabasi. Statistical mechanics of complex networks [ J]. Rev Mod Phys, 2002,74:47 - 97.
  • 10S N Dorogovtsev, J F F Mendes. Evolution of networks[J]. Adv Phys, 2002, 51: 1079- 1187.

共引文献365

同被引文献8

  • 1邵晓芳,姚伟,孙即祥,季虎.基于视觉竞争合作机制的主观轮廓提取[J].中国图象图形学报,2005,10(8):1024-1028. 被引量:5
  • 2GUY G, MEDIONI G. Inferring global perceptual contours from local features [ J ]. International Journal of Computer Vision, 1996,20 : 113-133.
  • 3MEDIONI G, LEE M S,TANG C K. A computational framework for feature extraction and segmentation [ M ]. Elsevier, 1999.
  • 4MORDOHAI P, MEDIONI G. Tensor voting: a pemeptual organization approach to computer vision and machine learning [ C ]//BOVIK A C ( editor ), Synthesis Lectures on Image, Video, and Multimedia Processing, Morgan claypool, 2006,28 ( 6 ) : 968 -982.
  • 5GUY G,MEDIONI G. Inference of surfaces, 3D curves, and junctions from sparse, noisy, 3D data [ J]. IEEE Trans on PAMI,1997,19(11) :1265-1277.
  • 6JIA J, TANG C K. Tensor voting for image correction by global and local intensity alignment [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005, 27(1) :36-51.
  • 7TONG W S, TANG C K. Robust estimation of adaptive tensors of curvature by tensor voting [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2005, 27 (3) :434-449.
  • 8姚伟 邵晓芳 孙即祥.基于张量投票的连续平滑边界提取.计算机应用,2004,(10):158-160.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部