期刊文献+

Internet访问时间的混沌性解析 被引量:2

Chaotic Analysis of Internet Traveling Time
下载PDF
导出
摘要 以CAIDA组织授权的海量数据为样本空间,利用相空间重构技术以及G-P算法,对时间维的Internet访问时间进行相空间重构,得到其混沌吸引子饱和关联维数为2.8308,证实Internet访问时间的演化过程具有混沌特征。在此基础上,根据关联维数及奇怪吸引子在相空间混沌轨道运动的特性,提出了三维微分方程组的Internet访问时间长期预测模型。 As the giant data samples authorized by CAIDA to be the sample space, the saturated correlative dimension of chaotic attractor of Internet traveling time with phase space reconstruction and G-P algorithm are calculated about 2. 8308. It approves that the evolvement of Internet traveling time exists characteristic of chaos. Based on the saturated correlative dimension and strange attractor movement near the path of the phase space, a model of three dimension differential equation of Internet traveling time is put forward, which is suitable for the long-term forecast.
出处 《计算机科学》 CSCD 北大核心 2008年第5期85-86,130,共3页 Computer Science
基金 国家自然科学基金(69873007) 国家级火炬计划项目(2002EB010154)
关键词 Internet访问时间 时间序列 相空间重构 饱和关联维数 混沌吸引子 Internet traveling time, Time series, Phase space reconstruction, Saturated correlative dimension, Chaotic attractor
  • 相关文献

参考文献7

二级参考文献46

  • 1张宇,张宏莉,方滨兴.Internet拓扑建模综述[J].软件学报,2004,15(8):1220-1226. 被引量:64
  • 2[1]Paxson V. End-to-End routing behavior in the Internet. IEEE/ACM Transactions on Networking, 1997,5(5):601~615.
  • 3[2]Kalidindi S, Zekauskas MJ. Surveyor: an infrastructure for Internet performance measurements. In: Proceedings of the INET'99. San Jose, 1999. http://www.isoc.org/inet99/proceedings/4h/4h_2.htm.
  • 4[3]Claffy K, Monk TE, McRobb D. Internet tomography. Nature, 1999, January 7. http://www.nature.com/nature/webmatters/tomog/ tomog.html.
  • 5[4]Burch H, Cheswick B. Mapping the Internet. IEEE Computer, 1999,32(4):97~98.
  • 6[5]Wolski R, Spring N, Hayes J. The network weather service: a distributed resource performance forecasting service for metacomputing. Journal of Future Generation Computing Systems, 1999,15(5):757~768.
  • 7[6]Chang H, Jamin S, Willinger W. Inferring AS-level Internet topology from router-level path traces. In: Proceedings of the SPIE ITCom 2001. 2001. http://citeseer.nj.nec.com/chang01inferring.html.
  • 8[7]Govindan R, Tangmunarunkit H. Heuristics for Internet map discovery. In: Proceedings of the IEEE INFOCOM 2000, Vol 3. 2000. 1371~1380. http://citeseer.nj.nec.com/govindan00heuristics.html.
  • 9[8]Munzner T. Interactive visualization of large graphs and networks [Ph.D. Thesis]. Stanford University, 2000.
  • 10[9]Tauro SL, Palmer C, Siganos G, Faloutsos M. A simple conceptual model for the Internet topology. In: Proceedings of the IEEE Conference of Global Telecommunications. 2001. http://www.cs.ucr.edu/~michalis/PAPERS/jellyfish-GI.pdf.

共引文献131

同被引文献18

  • 1张伟,吴智铭,杨根科.混沌时间序列的遗传演化建模[J].电子学报,2005,33(4):748-751. 被引量:2
  • 2孙宏伟,顾明,孙家广.基于主分量分析的相关矢量量化编码算法[J].计算机辅助设计与图形学学报,2005,17(8):1662-1666. 被引量:4
  • 3苏威积,赵海,徐野,张文波.基于hops的Internet复杂网络分割度分析[J].通信学报,2005,26(9):1-8. 被引量:6
  • 4李超,赵海,张昕,袁韶谦.Internet的访问时间分析[J].通信学报,2007,28(7):54-60. 被引量:2
  • 5LI HongYan, WANG Hong, GUI Chao. Internet time-delay prediction based on autoregressive and neural network model [A]. Proceedings of International Conference on Communications, Circuits and Systems [ C ]. Guilin. Guangxi: IEEE, 2006. 1758- 1761.
  • 6CAIDA skitter Project[ EB/OL]. http://www. caida. org.
  • 7Takens F.Detecting strange attractors in turbulence[C].Dynami- cal Systems and Aturbulence, Lecture Notes in Mathematics. NewYork:Springer-Verlag, 1981.
  • 8Wolf A,Swift J B,Swinney, et al.Detecting Lyapunov exponents from a time series[J].Physica D, 1985,16:285-317.
  • 9Grassberger P, Procaccia I.Measuring the strangeness of strange attractor[J].Physica D, 1999,127:48-69.
  • 10剑辉.混沌时间序列的长期预测方法研究[D].大连:大连理工大学,2005.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部