摘要
语义Web环境下的关联规则挖掘是数据挖掘领域新的研究热点。本文针对SWRL数据集的特征,建立新的数据挖掘形式背景,将FCA用于关系型关联规则的挖掘,提出了基于搜索空间分割的关联规则挖掘方法。采用FCA作为频繁模式的压缩表示方式,从生成的闭查询导出的关联规则,可有效控制冗余规则的产生。将搜索空间进行划分可减小问题的规模,充分利用已有的挖掘过程的中间结果所提供的信息,减少了计算量。由于采用了分而治之的策略,本文的方法易于扩展到对海量语义Web数据的并行处理。
Association rules mining in Semantic Web is a new challenge for data mining researchers. A search space partition based association rules mining method for SWRL data set is proposed. FCA is adopted as the condensed representation of frequent patterns with conjunctive query formation, association rules induced from closed query can avoid producing redundant rules in semantic. Search space partition can divide the large scale problem into small parts, computation results obtained during mining procedure are also be used fully for reducing unnecessary computation. The method proposed can easily be adapted to parallel algorithm for processing large mount of Semantic Web Data because of the strategy of divide and conquer.
出处
《计算机科学》
CSCD
北大核心
2008年第5期147-151,共5页
Computer Science
基金
国家自然科学基金项目资助(60573096)