期刊文献+

SMOTE和Biased-SVM相结合的不平衡数据分类方法 被引量:16

Imbalance Data Set Classification Using SMOTE and Biased-SVM
下载PDF
导出
摘要 针对不平衡数据集的分类问题,本文利用支持向量机推广能力强的优良特性,提出了SMOTE(Synthetic Minority Over-sampling Technique,SMOTE)和Biased-SVM(Biased Support Vector Machine,Biased-SVM)相结合的方法。该方法首先对原始数据使用Biased-SVM方法,然后对求出的支持向量使用SMOTE向上采样方法进行采样,最后再使用Biased-SVM方法进行分类。实验结果表明,本文采用的SMOTE和Biased-SVM相结合的方法可提高不平衡数据集分类精度。 In view of the classification of the imbalance data set,this paper gives the method using SMOTE (Synthetic Minority Over-sampling Technique, SMOTE) and Biased-SVM (Biased Support Vector Machine, Biased-SVM). Firstly, data set is taken into account using Biased-SVM algorithm. Secondly, the sampling to support vector is carried on using the method of SMOTE upward sampling. Finally, the classification is carried on using the method of Biased-SVM. The experimental result indicates that the method given in this paper improves the precision of imbalance data set classification.
出处 《计算机科学》 CSCD 北大核心 2008年第5期174-176,共3页 Computer Science
关键词 机器学习 不平衡数据 数据分类 SMOTE Biased-SVM Machine learning, Imbalanced data set, Data classification, SMOTE, Biased-SVM
  • 相关文献

参考文献10

  • 1Chawla N, Bowyer K, Hall L, et al. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 2002,16 : 321-357.
  • 2Kubat M, Matwin S. Addressing the Course of Imhalaneed Training Sets: One-sided Selection. ICML,1997:179-186.
  • 3Joshi M, Kumar V, Agarwal R. Evaluating Boosting Algorithms to Classify Rare Classes: Comparison and Improvements//First IEEE International Conference on Data Mining. 2001. 257-264.
  • 4Wu G, Chang E. Class-boundary Alignment for Imbalaneed Dataset Learning//The Twentieth International Conference on Machine Learning (ICML) Workshop on Learning from Imbalanced Datasets. Washington DC, 2003,8:49-56.
  • 5Huang Kaizhu, Yang Haiqin, King I, et al. Learning Classifiers from Imbalanced Data Based on Biased Minimax Probability Machine//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2004: 558- 563.
  • 6Veropoulos K, Campbell C, Cristianini N. Controlling the sensitivity of support vector machines//Proceedings of the International Joint Conference on AI. 1999:55-60.
  • 7Blake C, Merz C. UCI Repository of Machine Learning Databases, http://www. ies. uei. edu/- mlearn/- MLRepository. html. Department of Information and Computer Sciences. University of California. Irvine. 1998.
  • 8Webb A R.统计模式识别.王萍,杨培龙,罗颖昕,译.电子工业出版社,2004,10:33-37.
  • 9Vapnik V. The Nature of Statistical Learning Theory. NY: Springer-Verlag, 1995.
  • 10Akbani R, Kwek S, Japkowicz N. Applying Support Vector Machines to Imbalanced Datasets. ECML 2004, LNAI, 3204: 39-50.

同被引文献135

引证文献16

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部