摘要
基于CMAC,设计了一种神经网络控制器,对常用的CMAC权值学习方法进行修改,提出了一种基于目标函数优化的控制器权值算法。当被控对象的特性未知时,用神经网络辨识器进行辨识。并且给出了整个控制系统的自适应步骤。仿真实验表明了方案的有效性。
Based on Cerebellar Model Articulation Controller (CMAC), a kind of design scheme of neural network controller is given. The traditional method of modifying the weights of CMAC is improved according to the minimization of a cost function. When the characteristics of the object to be controlled is unknown, it can be identified by a neural network idetifier. The self-adaptive algorithm of the whole control system is proposed. The simulation experiment demonstrates the effectiveness of this scheme.
出处
《石油化工高等学校学报》
CAS
1997年第3期69-71,77,共4页
Journal of Petrochemical Universities
关键词
CMAC
神经网络
自适应控制
CMAC
Neural network controller
Neural network identifier
Training