期刊文献+

基于稀疏化的快速扩展信息滤波SLAM算法 被引量:2

Fast Extended Information Filter SLAM Algorithm Based on Sparsification
下载PDF
导出
摘要 随着SLAM技术的不断发展,计算效率已经成为制约SLAM发展的主要因素.所提出的算法从稀疏化的角度对扩展信息滤波SLAM算法进行改进.根据信息矩阵几乎稀疏的特点,该算法在合理稀疏化信息矩阵的同时利用环闭合检测技术,不仅大大提高了算法的计算效率,而且所得到的估计结果也很精确.通过仿真对信息矩阵稀疏化、算法效率、重定位以及误差和协方差四个关键问题进行了分析.分别就室内具有摄像头的两轮机器人和室外具有激光雷达的四轮机器人的情况进行了实验讨论.仿真与实验结果表明了所提算法的有效性. With the continuous development of SLAM technology, computational efficiency has become the main obstacle in SLAM development. From the view of sparsification, an improved algorithm based on extended information filter SLAM is introduced. According to the sparsification feature of information matrix, the algorithm not only improves computation efficiency but also maintains accuracy of the estimated result through using proper sparsification of information matrix as well as loop closure detection. Four key problems of information matrix sparsification, i. e. , algorithm efficiency, relocalization, error and covariance are analyzed with simulation. Two cases are discussed through experiments, i.e. indoor two-wheel robot with camera and outdoor four-wheel robot with laser scanner, and the results of simulation and experiments verify the validity of the proposed algorithm.
出处 《机器人》 EI CSCD 北大核心 2008年第3期193-200,共8页 Robot
基金 国家863计划资助项目(2006AA040203) 国家自然科学基金资助项目(60475032) 新世纪优秀人才支持计划资助项目
关键词 稀疏化 扩展信息滤波 同时定位和地图创建(SLAM) 移动机器人 sparsifieation extended information filter sinmhaneously localization and mapping (SLAM) mobile robot
  • 相关文献

参考文献15

  • 1Smith R, Self M, Chesseman P. Estimating uncertain spatial relationships in roboties[A], Autonomous Robot Vehicles[ M ] New York, NJ, USA: Springer-Verlag New York, Inc. , 1990. 167 - 193.
  • 2Durrant-Whyte H, BaiLey T. Simultaneous localization and mapping: Part 1 [ J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-110.
  • 3Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM) : Pala Ⅱ[ J ]. IEEE Robotics and Automation Magazine, 2006, 13(3): 108-117.
  • 4陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:59
  • 5Folkesson J, Christensen H. Outdoor exploration and SLAM using a compressed filter[ A]. Prnceedings of the IEEE International Conference on Robotics and Automation [ C ]. Piscataway, N J, USA: IEEE, 2003. 419-426.
  • 6Kim C, Sakthivel R, Chung W K. Unscented fastSLAM: A robust algorithm for the simultaneous localization and mapping problem [ A]. Proceedings of the IEEE International Conference on Robotics and Automation[C], Piscataway, NJ, USA: IEEE, 2007, 2439- 2445.
  • 7Nuchter A, Lingemanu K, Hellzberg J, et al. 6D SLAM -3D mapping outdoor environments[J]. Journal of Field Robotics, 2007, 24 (8-9) : 699 -722.
  • 8Wang Z, Huang S D, Dissauayake G. D-SLAM: A decoupled solution tn simultaneous Incalization and mapping[J]. The International Journal of Robotics Research, 2007, 26 ( 2 ) : 187 - 204.
  • 9Eustice R M, Singh H, Leonard J J, Exactly sparse delayed-state filters[A]. Proceedings of the IEEE International Conference on Robotics and Automation [ C ], Piscataway, NJ, USA: IEEE, 2005, 2417 - 2424.
  • 10Eustice R M, Singh H, Leonard J J, et al, Visually navigating the RMS Titanic with SLAM information filters[ DB/OL]. http://cml. mit. edu/- jleonard/pubs/eustice05b, pdf, 2005.

二级参考文献32

  • 1ELFES A, MORAVEC H. High resolution maps from wide angle sonar [C] // Proc of the IEEE lnt Conf on Robotics and Automation.St. Louis MO: IEEE Press, 1985: 116-121.
  • 2BORENSTEIN J,EVERETT H R,FENG L,et al.Mobile robot positioning: sensors and techniques [J]. J of Robotic Systems, Special Issue on Mobile Robots,1997,14(4):231 - 249.
  • 3SMITH R, SELF M, CHEESEMAN P. A stochastic map for uncertain spatial relationships [C]//Ptrg, of the 4th Int Symposium on Robotic Research. Cambridge MA: MIT Press, 1987:467 - 474.
  • 4THRUN S, BUCKEN A. Integrating grid-based and topological maps for mobile robot navigation [ C]//Proc of the 13th National Conf on Artificial Intelligence. Portland950.
  • 5ORIOLO G, ULIVI G,VENDITTELLI M.Fuzzy maps: A new tool for mobile robot perception and planning [J]. J of Robotic System,1997,14(3) : 179 - 197.
  • 6OHYA A,NAGASHIMA Y, YUTA S. Explore unknown environment and map construction using ultrasonic sensing of normal direction of walls [C]//Proc of the IEEE Int Conf on Robotics and Automation.San Diego CA: IEEE Press, 1994:485 - 492.
  • 7CHONG K S, KLEEMAN L. Mobile-robot map building from an advanced sonar array and accurate odometry [J].Int J of Robotics Research, 1999,18(1):20-36.
  • 8KORTENKAMP D, WEYNOUTH T. Topological mapping for mobile robots using a combination of sonar and vision sensing [C]//Proc of the 12th National Conf on Artificial Intelligence. Menlo Park: AAAI Press, 1994:979 - 984.
  • 9THRUN S,FOX D, BURGARD W. A probabilistic approach to concurrent mapping and localization for mobile robots [J]. Machine Learning, 1998,31 (1-3):29 - 53.
  • 10CASTELLANOS J.ANOS J A, NEIRA J, TARDOS J D. Multisensor fusion for simultaneous localization and map building [J].IEEE Trans on Robotics and Automation,2001,17(6):908- 914.

共引文献58

同被引文献11

  • 1邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 2Durrant-Whyte H, Tim B. Simultaneous localization and mapping: part Ⅰ[J]. IEEE Robotics and Automation Magazine (S1070-9932), 2006, 13(2): 99-110.
  • 3Aron J Cooper. A Comparison of Data Association Techniques for Simultaneous Localization and Mapping [D]. USA: University of Minnesota, 2005.
  • 4W Wijesoma, L Perera, Martin Adams. Toward Multidimensional Assignment Data Association in Robot Localization and Mapping [J]. IEEE Trans. on Robotics (S 1552-3098), 2006, 22(2): 350-365.
  • 5Samuel J Davey. Simultaneous Localization and Map Building Using the Probabilistic Multi-Hypothesis Tracker [J], IEEE Trans. on Robotics (S1552-3098), 2007, 23(2): 271-280.
  • 6Jose A Castellanos, J M M Montiel, J Neira, J D Tardos. The SPmap: A Probabilistic Framework for Simultaneous Localization and Map Building [J]. IEEE Trans. on Robotics and Automation (S0018-9286), 1999, 15(5): 948-952.
  • 7G A Borges, M J Aldon, T Gil. An Optimal Pose Estimator for Map-based Mobile Robot Dynamic Localization: Experimental Comparison with the EKF [C]// IEEE International Conference on Robotics and Automation, 2001. USA: IEEE, 2001: 1585-1590.
  • 8Anousaki G C, Kyriakopoulos K J. Simultaneous localization and map building of skid-steered robots [J]. IEEE Robotics and Automation Magazine (S 1070-9932), 2007, 14( 1 ): 79-89.
  • 9Haiqiang Zhang. CEKF-SLAM simulator [EB/OL]. [2009]. http ://www.openslam.org/cekfslam.html.
  • 10王耀南,余洪山.未知环境下移动机器人同步地图创建与定位研究进展[J].控制理论与应用,2008,25(1):57-65. 被引量:27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部