期刊文献+

超声喷雾热分解WO_3薄膜的光电化学制氢研究 被引量:3

Characterization of Ultrasonic Spray Pyrolysis Deposited WO_3 Thin Film for Photoelectrochemical Splitting of Water
下载PDF
导出
摘要 以H2O2在93℃水浴中溶解H2WO4得到的溶液作为超声喷雾热分解反应的前驱液制备WO3薄膜,考查了H2O2添加量及前驱液浓度对薄膜结构和光电化学制氢性能的影响.结果表明,增加前驱液中H2O2的添加量和降低前驱液浓度都能使薄膜表面由网状结构分裂成颗粒堆积结构,低浓度前驱液制备的薄膜表面经热处理后会结晶出尺寸较大的颗粒.前驱液浓度越高或H2O2添加量越多,则平带电位变得越负.光电转换效率(IPCE)测量结果表明,对于所有样品,在电极电位(饱和甘汞电极)为0.5 V时,光照产生光电流的起始波长都为450 nm.在强度较弱的单色光照射下,光电效率随H2O2添加量的增加和前驱液浓度的降低都先增大后减小.氙灯直接照射下的光电流测试结果表明,H2O2添加量对光电流的影响不大,而前驱液浓度的降低增大了光电流. WO3 films were deposited by ultrasonic spray pyrolysis using the precursor obtained by dissolving tungsten acid in hydrogen peroxide aqueous solution in 366 K water bath. The effect on the structure and photoelectrochemical properties of WO3 films by varying amount of hydrogen peroxide and concentration of precursor was investigated. It is found that increase in amount of hydrogen peroxide and decrease in concentration of precursor lead to more cracks on the networklike film surface to transform it into a particle-assembled structure, while the particles in the films deposited with low concentration precursor crystallize to large grains after annealing process. The flat-band potential shifts negatively with both increasing hydrogen peroxide and precursor concentration. The incident photon to current efficiency (IPCE) first increases and then decreases with the increasing hydrogen peroxide and decreasing precursor concentration. The same photocurrent onset wavelength for all the films is observed as 450 nm with the illumination light wavelength scan from long length to short. The photocurrent-voltage feature under high intensity illumination from Xe lamp reveals that photocurrent increases with lower concentration of precursor, while the photocurrent changes little with different amount of hydrogen peroxide.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第5期617-621,625,共6页 Journal of Xi'an Jiaotong University
基金 国家重点基础研究发展规划资助项目(2003CB214500)
关键词 三氧化钨 喷雾热分解 光电化学 制氢 tungsten oxide spray pyrolysis photoelectrochemistry water splitting
  • 相关文献

参考文献1

二级参考文献14

  • 1Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [ J ]. Nature, 1972,238(5358):37-38.
  • 2Jong Hyeok Park, Sungwook Kim, Allen J Bard. Novel Carbon-doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting[J]. Nano Letters, 2006,6( 1 ):24-28.
  • 3IIkay Cesar, Andreas Kay, Jose A Gonzalez Martinez, et al. Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-directing Effect of Si-doping[J]. Journal of the American Chemical Society, 2006,128(14) :4582-4583.
  • 4Akihiko Kudoa. Development of Photocatalyst Materials for Water Splitting[J ]. International Journal of Hydrogen Energy,2006,31:197-202.
  • 5Kazuhiko Maeda, Kentaro Teramura, Daling Lu,et al. Photocatalyst Releasing Hydrogen from Water[J ]. Nature,2006, 440:295.
  • 6Rogers K D, Lane D W, Painter J D, er al. Structural Charactcrisation of Sprayed TiO2 Films for Extremely Thin Absorber Layer Solar Cells[J ]. Thin Solid Films,2004,466 : 97-102.
  • 7Okuya Masayuki, Shiozaki Katsuyuki, Horikawa Nobuyuki, et al. Porous TiO2 Thin Films Prepared by Spray Pyrolysis Deposition (SPD) Technique and Their Application to UV Sensors[ J ]. Solid State Ionics, 2004,172 : 527-531.
  • 8Chaudhary Yatendra S, Agrawal Anshul, Shrivastav Rohit, et al. A Study on the Photoelectrochemical Properties of Copper Oxide Thin Films[J ]. International Journal of Hydrogen Energy,2004,29:131-134.
  • 9Jing Dengwei, Guo Liejin. A Novel Method for the Preparation of a Highly S:able and Active CdS Photocatalyst with a Special Surface Nanostructure[ J ]. Journal of Physical Chemistry B, 2006,110 (23) : 11139-11145.
  • 10Kevin D Dobson, Iris Visoly-fisher, Gary Hodes, et al. Stability of CdTe/CdS Thin-film Solar Cells[J ]. Solar Energy Materials & Solar Cells,2000,62:295 325.

同被引文献56

  • 1张腾,唐电,张琼,邵艳群,Y.LEE.Pechini法制备的CeO_2纳米晶的晶化动力学[J].中国有色金属学报,2004,14(6):1053-1057. 被引量:4
  • 2Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode [J].Nature, 1972, 238:37-38.
  • 3Satsangi, V. R.; Kumari, S.; Singh, A. P.; Shrivastav, R.; Dass, S,, Nanostructured hematite for photoelectrochemical generation of hydrogen [J] Int. J. Hydrogen Energy, 2008, 33, (1):312-318.
  • 4Xu, C.; Killmeyer, R.; Gray, M. L.; Khan, S. U. M., Enhanced carbon doping of n-TiO2 thin films for photo- electrochemical water splitting [J]. Electrochem. Commun, 2006, 8, (10):1650-1654.
  • 5柳正辉 程德书 李玉书 王昌瑾.光助电解水制氢中多晶a-Fe2O3薄膜光电板的研.太阳能学报,1982,3:19-28.
  • 6Wang, H.; Lindgren, T.; He, J.; Hagteldt, A.; Lindquist, S.-E., Photolelectrochemistry of Nanostructured WO3 Thin Film Electrodes for Water Oxidation: Mechanism of Electron Transport [J]. J.Phys.Chem.B, 2000, 104, (24):5686-5696.
  • 7Enesca, A.; Enache, C.; Duta, A.; Sehoonman, J., High crystalline tungsten trioxide thin layer obtained by SPD technique[J]. J. Eur. Ceram. Soc, 2006, 26, (4-5):571- 576.
  • 8Enesca, A.; Duta, A.; Schoonman, J., Study of photoactivity of tungsten trioxide (WO3) for water splitting[J]. Thin Solid Films, 2007, 515, (16), 6371-6374.
  • 9Regragui, M.; Addou, M.; Outzourhit, A.; Bernede, J. C.; El Idrissi, E.; Benseddik, E.; Kachouane, A., Preparation and characterization of pyrolytic, spray deposited electrochromic tungsten trioxide films [J].Thin Solid Films, 2000, 358, (1-2):40-45.
  • 10Azimirad, R.; Naseri, N.; Akhavan, O.; Moshfegh, A. Z., Hydrophilicity variation of WO3 thin films with annealing temperature [J].J. Phys. D: Appl. Phys, 2007, (4):1134.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部