期刊文献+

基于Kernel PCA的人脸识别算法的探讨 被引量:2

DISCUSSION ON FACE RECOGNITION ALGORITHM BASING ON KERNEL PCA
下载PDF
导出
摘要 扼要阐明抽取二维人脸图像特征方法并进行人脸识别,结合实验结果进行分析比较主元分析和核主元分析方法的优缺点,得出核主元分析方法在人脸识别算法中误识率低,解决了维数和小样本问题,能准确快速识别人脸的结论. Extracting and recognizing the 2-Dimension face feature are briefly expressed, combined with the investigation results on principle component analysis and kernel principle component analysis, which advantages and shortcomings are compared. The experiment finds that the KPCA algorithm on face recognition shows the good performance of lower error, resolves the problems of dimension and small sample system, and recognizes face accurately and quickly
出处 《北京工商大学学报(自然科学版)》 CAS 2008年第3期37-39,共3页 Journal of Beijing Technology and Business University:Natural Science Edition
关键词 人脸识别 主元分析法 核主元分析法 face recognition principle component analysis kernel principle component analysis
  • 相关文献

参考文献6

  • 1Liu C J, Wechsler H. Evolutionary pursuit and its application to face recognition[J]. IEEE Tansactions on Pattern Analysis and Machine Intelligence, 2000, 22 ( 6 ) : 570 - 582.
  • 2Sankaran P, Asari V. A multi-view approach on modular PCA for illumination and pose invariant face recognition [C]//Processing of the 33rd Applied Imagery Pattern Recognition Workshop. Kunming, 2004:2052 - 2058.
  • 3Tolba A S, El-Baz A H, El-Harby A A, Face recognition: A literature review[J]. International Journal of Signal Processing, 2005, 2(1): 87-103.
  • 4Turk M A, Pentland A P. Face recognition using eigenfaces[J]. IEEE, 1991(6):586-591.
  • 5Pentland A, Moghaddam B, Starner T. View-based and modular eigenspaces for face recognition[J]. IEEE Conference on Computer Vision & Pattern Recognition, 1994(6) :528 - 533.
  • 6Yang M H, Ahuja N, Kraegman D. Face recognition using kernel eigenfaces[J]. IEEE, 2000(7):37- 40.

同被引文献19

  • 1徐春明,乐晓蓉,王正群.一种基于核主成分特征组合的人脸识别方法[J].计算机工程与应用,2006,42(3):76-78. 被引量:7
  • 2李嵩,刘党辉,沈兰荪.基于Gabor变换的人眼定位方法[J].测控技术,2006,25(5):27-29. 被引量:9
  • 3Maxim A,Grudin.On internal representations in face recogn ition systems[J].Pattern Recognition,2000,33(8):1161-1177.
  • 4Pentland A. Looking at people:sensing for ubiquitous and wearable computing [J].IEEE Trans Pattern A nol Machine Intel,2000,22(1): 107-119.
  • 5Pentland A, Mohandas B,Stamer T.View-based and monoc ular eigenspaces for face recongnition[C].IEEE Confon Computer Vision and Pattern Recongnition, 1994:84-91.
  • 6Turk M, Pentland A.Eigenface for Recognition[J].CogNeuro sis,1991,23(3):71-86.
  • 7WangL,TanT KExperimentsresultsoffacedescription based on the 2nd-order eigenfaces method[S].ISO/MPEG 6001, Geneva,2000-05.
  • 8Wang LTan T KA new proposal for face feature description [S].ISO/MPEG 6001,Noordwi kerhout,2000-05.
  • 9Olivetti insfitute.ORL facedatabase [DB/OL].1994-09-01 (2009-03-14)http://www.uk.researeh.att.con/facedatabas e.html.
  • 10Sun T, Neuvo Y.Detail-preserving median based fdters in image processing [J].Pattern Recognition, 1994,15:341-347.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部