期刊文献+

高应变速率下Al-Mg-Sc合金压缩变形的流变方程 被引量:5

Constitutive equation of flow for Al-Mg-Sc alloy under high strain rate
下载PDF
导出
摘要 对A1-Mg—Sc材料进行静态力学性能实验,采用微型SHPB(Split Hopkinson pressurebar)实验装置对Al-Mg-Sc材料在应变率为10310。范围内进行动态力学行为测试。结果表明:Mg-Sc合金材料随应变率的提高,真实应力一应变曲线略有升高,表明Al-Mg-Sc材料不是一种对应变率敏感的材料;随着应变率的升高,材料发生的应变增大,表现出在高应变率下具有明显的应变强化效应。通过分析,选用较为合理的Johnson--Cook本构模型来构建A1.Mg.Sc合金高应变速率流变方程。根据遗传算法确定J—c方程中的参数。拟合值与实验值较吻合,证明经SHPB实验数据构建的流变方程是合理的,这为Al-Mg-Sc板料高应变速率下有限元分析需要的材料变形特性参数提供了重要的数据来源。 The static mechanics performance of the Al-Mg-Sc material was investigated, and then dynamic mechanics behavior of the Al-Mg-Sc material was measured at strain rate ranging from 1 000 to 10 000/s with the miniature split Hopkinson pressure bar (SHPB) apparatus. The results show that the Al-Mg-Sc material is not a kind of strain rate sensitive materials, but it has obvious strain strengthening effect under high strain rate. A more reasonable Johnson---Cook equation by comparing is chosen to analyze the dynamic mechanical properties of Al-Mg-Sc alloy after its relationship parameters are fitted by genetic algorithm with the experimental data. The comparison between data of experiment and fitted constitutive equation indicates that the constitutive equation is suitable for expressing the dynamic behavior of Al-Mg-Sc alloy, which provides important material characteristic parameter for mechanics numerical analysis further in the high strain rate.
作者 鲁世红 何宁
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2008年第5期897-902,共6页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(10477008)
关键词 AL-MG-SC合金 高应变速率 微型SHPB装置 流变方程 遗传算法 Al-Mg-Sc alloy high strain rate miniature split Hopkinson pressure bar constitutive relation genetic algorithm
  • 相关文献

参考文献17

  • 1RODER O, WIRTZ T, GYSLER A, LUTJERING G. Fatigue properties of Al-Mg alloys with and without scandium[J]. Mater Sci Eng A, 1997, 234/236: 181-184.
  • 2ROVEN H J, NESBOE H, WERENSKIOLD J C, SEIBERT T, et al. Mechanical properties of aluminium alloys processed by SPD Comparison of different alloy systems and possible product areas[J]. Mater Sci Eng, 2005, 410/411:426-429.
  • 3李小燕,鲁世红,任旭东,鲁金忠.AlMgSc合金板激光冲击成形实验研究[J].应用激光,2006,26(5):292-294. 被引量:2
  • 4魏华凯,胡芳友,管仁国.Al-Mg-Sc合金的组织和性能[J].特种铸造及有色合金,2006,26(11):739-741. 被引量:7
  • 5TISZA M. Numerical modelling and simulation in sheet metal forming[J]. Journal of Materials Processing Technology, 2004, 151(1/3): 58-62.
  • 6FIRAT M. Computer aided analysis and design of sheet metal forming processes: Part Ⅰ- The finite element modeling concepts[J]. Materials & Design, 2007, 28(4): 1298-1303.
  • 7GUN B, LAWS K J, FERRY M. Elevated temperature flow behaviour of an Mg-based bulk metallic glass[J]. Mater Sci Eng A, 2007, 471(1/2): 130-134.
  • 8BRONKHORST C A, CERRETA E K, XUE O, MASON T A, GRAY G T. An experimental and numerical study of the localization behavior of tantalum and stainless steel[J]. International Journal of Plasticity, 2006, 22(7): 1304-1335.
  • 9HAN Zhao. Material behaviour characterization using SHPB techniques, tests and simulations[J]. Computers & Structures, 2003, 81(12): 1301-1310.
  • 10LINDHOLM U S. Some experiments with the split Hopkinson pressure bar[J]. Journal Mechanic Physic Solids, 1964, 12: 317-350.

二级参考文献35

  • 1魏华凯,管仁国,温景林,李俊鹏,李罡.激光焊接技术在飞机结构损伤抢修中的应用[J].轻合金加工技术,2005,33(4):47-50. 被引量:7
  • 2高长伟,黎向锋,左敦稳,王珉,张永康,任旭东.TC4钛合金板激光冲击成形实验研究[J].应用激光,2005,25(3):158-160. 被引量:9
  • 3朱祖芳.有色金属的耐腐蚀性及其应用[M].北京:化学工业出版社,1995..
  • 4PorterDA 李长海译.金属和合金中的相变[M].北京:冶金工业出版社,1988..
  • 5Maudlin P J, Foster J C Jr, Jones S E. A continuum mechanics code analysis of steady plastic wave propagation in the Taylor test[J]. International Journal of Impact Engineering, 1997,19 (3):231-- 256.
  • 6Noble J P, Goldthorpe B D, Church P, et al. The use of the Hopkinson bar to validate constitutive relations at high rates of strain[J]. Journal of the Mechanics and Physics of Solids, 1999,47(5):1187--1206.
  • 7Jones S E, Paul J Maudlin, Joseph C, et al. An engineering analysis of plastic wave propagation in the Taylor test[J]. International Journal of Impact Engineering, 1997,19 (2) : 95-- 106.
  • 8Wang B, Zhang J, Lu G. Taylor impact test for ductile porous materials--Part 2: Experiments[J]. International Journal of Impact Engineering, 2003,28:499-- 511.
  • 9Dhararn C K H, Hauser F E. Determination of stress-strain characteristics at very high strain rates[J]. Experimental Mechanics, 1970,10:370-- 376.
  • 10Wulf G L, Richardson G T. The measurement of dynamic stress-strain relationships at very high strains[J]. Journal of Physics E: Scientific Instruments, 1974,7:167-- 169.

共引文献15

同被引文献47

  • 1李玉龙,索涛,郭伟国,胡锐,李金山,傅恒志.确定材料在高温高应变率下动态性能的Hopkinson杆系统[J].爆炸与冲击,2005,25(6):487-492. 被引量:51
  • 2付秀丽,艾兴,万熠,张松.铝合金7050高温流变应力特征及本构方程[J].武汉理工大学学报,2006,28(12):113-116. 被引量:16
  • 3叶方伟.钽及其合金[J].材料导报,1997,11(2):27-30. 被引量:23
  • 4高晓军,徐宏,郭志俊,林勇.爆炸成形弹药型罩材料的现状和趋势[J].兵器材料科学与工程,2007,30(2):85-88. 被引量:13
  • 5赵寿根,何著,杨嘉陵,程伟.几种航空铝材动态力学性能实验[J].北京航空航天大学学报,2007,33(8):982-985. 被引量:32
  • 6Klamecki B E. Incipient chip formation in metal cutting—A three dimensional finite analysis [ D ]. Urbana: University of Urbana, Champaign, 1973.
  • 7Lajczok M R. A study of some aspects of metal cutting by the finite element method [ D ]. Raleigh : North Carolina State U- niversity, 1980.
  • 8Movahhedy M, Gadala M S, Altintas Y. Simulation of the or- thogonal metal cutting process using an arbitrary Lagrangian- Eulerian finite element method [ J ]. Journal of Materials Pro- cessing Technology,2000,103 (2) :267 - 275.
  • 9Ohbuchi Y, Obikawa T. FEM simulation of abrasive grain machining processes—Chip formation with large negative rake[ J]. Memoirs of the Faculty of Engineering, Kumamoto University ,2003,47(2) : 1 - 18.
  • 10Marusich T D, Ortiz M. Modelling and simulation of high- speed machining [ J ]. International Journal for Numerical Methods in Engineering, 1995,38(21 ) :3675 - 3594.

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部