期刊文献+

二维quasi-geostrophic方程的几何结构和非爆炸性(英文) 被引量:1

Geometric Structure and Non-blowup of 2D Quasi-geostrophic Equation
原文传递
导出
摘要 讨论了二维quasi-geostrophic方程中的主动标量θ的封闭水平集C的动态演变.当水平集具有某种指定几何性质,那么在水平集上▽⊥θ的大小与Ω(t)可比的假设下,证明了有限时间T内解爆炸的不存在性.最后给出了一个2D QG方程的Lax对表示. The dynamic evolution of a closed level set C of active scalar θ in the 2D quasi-geostrophic equation is studied. Under some mild assumptions about the geometry of the level set and with the condition that the magnitude of ▽⊥θ along C is comparable to Ω(t), it is shown that there is no finite-time blowup up to time T. Later, in order to further analyze 2D QG equation, a Lax pair representation (L,A) of the equation is discussed.
作者 邓健 纪冕
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期224-231,共8页 Journal of Fudan University:Natural Science
关键词 二维quasi-geostrophic方程 LAX对 有限时间爆炸 2D quasi-geostrophic equation Lax pair finite-time blowup
  • 相关文献

参考文献7

  • 1Constantin P, Majda A,Tabak E. Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar [J]. Nonlinearity , 1994,7(6) : 1495-1533.
  • 2Constantin P, Nie Q, Schoghofer N. Nonsingular surface-quasi-geostrophic flow[J ]. Phys Lett A, 1998,241(3): 168-172.
  • 3Deng J ,Hou T Y, Yu X. Geometric properties and non-blowup of 3-D incompressible Euler equatlon[J]. Comm- Partial Differential Equations ,2005,30:225-243.
  • 4FriecUander S,Vishik M. Lax pair formulation for the Euler equation[J]. Phys LettC A, 1990,148(6-7) :313- 319.
  • 5Vishik M, Friedlander S. An invere scattering treatment for the flow of an ideal fluid in two dlmensions[J]. Nonlinearity, 1993,6 (2) : 231-249.
  • 6Li Y. On 2D Euler equations. Part Ⅱ. Lax pairs and homoclinlc structures[J]. Comm Appl Nonl Analysis ,2003, 10(1) : 1-43.
  • 7Li Y. Ergodic isospectral theory of the Lax pairs of Euler equations with Harmonic analysis flavor[J]. Proc AMS, 2005,133 : 2681-2687.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部