期刊文献+

基于RS与ANFIS的投标报价决策研究 被引量:5

Study on Bidding Decision-making Based on Rough Sets and Adaptive-network-based Fuzzy Inference System
下载PDF
导出
摘要 针对建设工程投标报价中标高金的确定这一多因素决策问题,提出了粗糙集理论(RS)与自适应模糊神经网络(ANFIS)集成的标高金决策方法.首先利用自组神经织网络(SOM)对决策系统中的连续属性值离散化后,通过粗糙集理论约简属性,去除冗余信息,计算出标高金决策系统的约简;根据这一约简,经过减法聚类获得模糊推理规则数目,确定ANFIS的初始结构,最后应用ANFIS对文章中30个典型国际工程案例的标高金进行计算和预测.研究结果表明,与一般BP神经网络相比,该方法网络规模大大减小,网络结构透明,学习速度更快,而且保持了较高的预测精度. A new method based on the integration of rough set theory (RS) and adaptive-network-based fuzzy inference system(ANFIS) was put forward for the determination of the mark-up of the construction project. Firstly, the continuous attributes in the decision system were discretized with self-organizing map neural network. Then, reduction was found by using rough set theory to reduce attributes and eliminate superfluous data. With this reduction, subtractive cluster method was applied to generate the fuzzy inference rules, and the network structure of ANFIS was initialized. Finally,the mark-ups of 30 typical international projects were calcu- lated and predicted by ANFIS. It is concluded that the model with this method is smaller in network scale, clearer in network structure, and faster in learning speed than the normal BP neural network. Moreover, this method has high accuracy. So it is suitable to solve complicated decision-making problems, such as the biding of construction projects.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期89-92,共4页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(70772057)
关键词 建设工程 粗糙集理论 自适应系统 模糊神经网络 利润 construction rough set theory adaptive systems fuzzy neural nets profitability
  • 相关文献

参考文献9

  • 1王雪青,喻刚,孟海涛.基于GA改进BP神经网络的建设工程投标报价研究[J].土木工程学报,2007,40(7):93-98. 被引量:35
  • 2MARZOUK M, MOSELHI O. A decision support tool for construction bidding[ J ]. Construction Innovation, 2003,3 (2) : 111 - 124.
  • 3JANG J S R. ANFIS: adaptive-network-based fuzzy inference systems[J]. IEEE Transactions on Systems, Man and Cybernetics, 1993,23(3) : 665 - 685.
  • 4胡寿松,何亚群.粗糙决策理论与应用[M].北京:北京航空航天大学出版社,2005:9—10.
  • 5MONTAZER G A, SABZEVARI R, KHATIR H G P. Intelligent parameter reduction using rough sets theory and sensitivity analysis[J]. WSEAS Transactions on Systems,2007,6(3) :623 - 630.
  • 6TAY F E H,SHEN L X. Fault diagnosis based on rough set theory [J]. Engineering Applications of Artificial Intelligence, 2003, 16(1): 39-43.
  • 7BEAUBOUEF T, PETRY F E, LADNER R. Spatial data methods and vague regions: a rough set approach [J]. Applied Soft Computing, 2007, 7(1) : 425 - 440.
  • 8HAYAJNEH M T,RADAIDEH S M. Monitoring hole quality in a drilling process using a fuzzy subtractive clustering-based system identification method [ J ]. Journal of Testing and Evaluation, 2007,35(3): 1-6.
  • 9LI H,SHEN L Y,LOVE P E D. ANN-based mark-up estimation system with self-explanatory capacities[J]. Journal of Construction Engineering and Management, 1999,125 (3) : 185 - 189.

二级参考文献9

  • 1Marzouk M, Moselhi O. A decision support tool for construction bidding [ J ]. Construction Innovation, 2003, 3 (2): 111-124.
  • 2Maria-Sanche Z P. Estimation of environmental risks in construction projects in Puebla (Mexico): a neural network approach [J]. Management Information Systems, 2004, (9): 603-612.
  • 3Gunaydin H M, Dogan S Z. A neural network approach for early cost estimation of structural systems of buildings [J]. International Journal of Project Management, 2004, 22(7): 595-602.
  • 4FuHua, Sun Shaoguang, Xu Zhenliang. Study on optimization control method based on artificial neural network [J]. Journal of Coal Science and Engineering, 2005, 11(2): 82-85.
  • 5Beiqy H, Meybodi M R. A learning automata based algorithm for determination of minimum number of hidden units for three layers neural networks [J]. Amirkabir (Journal of Science and Technology), 2001, 12(46): 111-136.
  • 6Zheng D X M, Ng S T, Kumaraswarny M M. Applying a genetic algorithm-based multiobjecfive approach for timecost optimization [J]. Journal of Construction Engineering and Management, 2004, 130(2): 168-176.
  • 7Liu S L, Wanq S Y, Lai K K. A general multivariate analysis approach for determining bid mark-up strategy [J]. Construction Management and Economics, 2005, 23 (4): 347-353.
  • 8Florence Y Y, Liu M. Factors considered by successful and profitable contractors in mark-up size decision in Singapore [J]. Building and Environment, 2005, 40 ( 11 ): 1557-1565.
  • 9冯刚,陈森发.投标报价决策模型进展[J].系统工程理论方法应用,2002,11(2):107-110. 被引量:7

共引文献40

同被引文献45

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部