期刊文献+

基于差异进化算法的医学图像配准方法 被引量:2

Medical Image Registration Based on Differential Evolution
下载PDF
导出
摘要 基于互信息的医学图像配准是一种目标函数的优化问题,但传统优化方法往往由于目标函数收敛到局部极值而导致错误的结果.该文将差异进化算法引入到医学图像配准中,利用其收敛特性避免互信息测度优化陷入局部极值,实现了多模态医学图像的配准.实验数据表明,以互信息测度为目标函数的医学图像仿射配准中,差异进化算法优于Powell算法和模拟退火算法. Medical image registration using mutual information can be viewed as an optimization problem. In optimization problems, the objective function is often trapped into a local minimum. In this paper, differential evolution is proposed for medical image registration, and applied to registration of muhi-modality medical images. The proposed method can avoid local minimum due to its converging characteristics. Experimental results show that, using mutual information and affine transformation as objective functions, the differential evolution algorithm outperforms the Powell algorithm and the simulated annealing for medical image registration.
出处 《应用科学学报》 CAS CSCD 北大核心 2008年第3期274-280,共7页 Journal of Applied Sciences
关键词 差异进化 互信息 POWELL算法 模拟退火算法 图像配准 differential evolution, mutual information, Powell algorithm, simulated annealing, image registration
  • 相关文献

参考文献18

  • 1WOODS R, M AZZIOTTA J, CHERRY S. MRI-PET registration with automated algorithm[ J]. Computer Assist Tomography, 1993, 17:536-546.
  • 2COLLIGNON A, MAES F, DELAERE D, VANDERMEULEN D, SUETENS D, MARCHAL D. Automated multi-modality image registration based on information theory [ C ]//Information Processing in Medical Imaging (1995). Dordrecht: Kluwer Academic Publishers, 1995:263 - 274.
  • 3VIOLA P, WELLS W M. Alignment by maximization of mutual information [ J ]. International Journal of Computer Vision, 1997, 24(2): 137-154.
  • 4STUDHOLME C, DEREK L, DAVID J. Automated threedimensional registration of magnetic resonance and position emission tomograph brain images by multiresolution optimization of voxel similarity measures [ J ]. Medical Physics, 1997, 24( 1 ) :25 -35.
  • 5罗述谦,吕维雪.医学图像配准技术[J].国外医学(生物医学工程分册),1999,22(1):1-8. 被引量:69
  • 6MAES F, COLLIGNON A, VANDERMEULEN D, MARCHAL G, SUETENS P. Multimodality image registration by maximization of mutual information [ J ]. IEEE Transactions on Medical Imaging, 1997, 16(2): 187- 198.
  • 7PLUIM J P W, MAINTZ J B A, VIERGEVER M A. Mutual information based registration of medical images: a survey [J]. IEEE Transactions on Medical Imaging, 2003, 22 (8) : 986 - 1004.
  • 8PLUIM J P W, MAINTZ J B A, VIERGEVER M A. Interpolation artefacts in mutual information-based image registration [ J ]. Computer Vision and Image Understanding, 2000, 77 (9) : 211 - 232.
  • 9STORN R, PRICE K. Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces, TR - 95 - 012 [ R ]. ICSI, 1995 : 1 - 12.
  • 10FEOKTISTOV V. Differential evolution-in search of solutions [ M ]. London : Springer-Verlag, 2006:133 - 143.

共引文献68

同被引文献16

  • 1Storn R,Price K.Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[R].TR-95-012,International Computer Science Institute:Berkeley,CA,USA,1995:1-12.
  • 2De Falco I,Maisto D,Scafuri U,et al.Distributed differential evolution for the registration of remotely sensed images[C] //Proceedings of the 15th Euromicro International Conference on Parallel,Distributed and Network-Based Processing.Washington,DC,USA:IEEE Computer Society,2007:358-362.
  • 3Telenczuk B,Ledesma-Carbato M J,Velazquez-Muriel J A,et al.Molecular image registration using mutual information and differential evolution optimization[C] //Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging:Nano to Macro.Arlington,VA,USA:IEEE Computer Society,2006:844-847.
  • 4He R,Narayana P A.Improvement to global optimization of mutual information on retrospective registration of magnetic resonance images[C] //Proceedings of the Second Joint EMBS/BMES Conference.Houston,TX,USA:IEEE Computer Society,2002:1009-1010.
  • 5Salomon M,Perrin G R,Heitz F.Differential Evolution for Medical Image Registration[C] //Proceedings of the International Conference on Artificial Intelligence.Las Vegas,USA:CSREA Press,2001:201-207.
  • 6Brest J,Boskovic B,Greiner S,et al.Performance comparison of self-adaptive and adaptive differential evolution algorithms[J].Soft Computing,2007,11(7):617-629.
  • 7Rahnamayan S,Tizhoosh H R,Salama M M A.Opposition-based differential evolution (ODE) with variable jumping rate[C] //Proceedings of the 2007 IEEE Symposium on Foundations of Computational Intelligence (FOCI).Hawaii,USA:IEEE Communications Society,2007:81-88.
  • 8Tizhoosh H R.Opposition-based learning:A new scheme for machine intelligence[C] //Proceedings of the International Conference on Computational Intelligence for Modeling Control and Automation.Vienna,Austria:IEEE Communications Society,2005,I:695-701.
  • 9Rahnamayan S,Tizhoosh H R,Salama M M A.Opposition-based differential evolution algorithms[C] //Proceedings of 2006 IEEE World Congress on Computational Intelligence.Vancouver,BC:IEEE Press,2006:7363-7370.
  • 10Rahnamayan S,Tizhoosh H R,Salama M M A.Opposition-Based Differential Evolution for Optimization of Noisy Problems[C] //Proceedings of 2006 IEEE World Congress on Computational Intelligence.Vancouver,BC:IEEE Press,2006:6756-6763.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部