期刊文献+

时空联合的红外运动目标提取算法 被引量:1

Extraction Algorithm for Infrared Moving Target Based on Spatio-temporal Information
下载PDF
导出
摘要 针对红外图像对比度差、边缘模糊的特点,提出了一种基于时空联合的红外序列图像目标提取的新方法。算法充分利用了红外目标的亮度特征、背景信息以及运动信息。时域分割中通过建立帧差图像背景的高斯分布模型,采用变化检测模板来确定红外目标约束区域。然后,构造图像像素与区域之间的空间关系隶属度矩阵并约束到传统的模糊聚类算法中,空域分割则利用该模糊聚类来对目标约束区域进行有效分割。最后将时空分割结果融合便能实现最终的红外目标提取。实验结果表明,该方法简单有效,能准确提取动态场景中的红外目标。 A novel extraction algorithm for infrared moving target is proposed based on spatio-temporal information. The proposed algorithm efficiently utilizes the target intensity feature, surrounding background and the moving information. In time domain segmentation, Gauss distribution model of frame difference background is established to determine the infrared target region via change detection mask. The spatial relation matrix between pixel and region is constructed to constrain the classical fuzzy C-Means clustering (FCM), And then, the region which contains the entire target is segmented efficiently based on the improved fuzzy clustering algorithm. At last, infrared target extraction is achieved by the fusion of spatio-temporal results. Experimental results verify the effectiveness and robustness of this extraction algorithm which can extract the infrared target correctly.
出处 《光电工程》 CAS CSCD 北大核心 2008年第5期50-54,139,共6页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60572080,60772151)
关键词 时空联合 红外图像序列 模糊聚类 目标提取 spatio-temporal information infrared image sequence fuzzy clustering target extraction
  • 相关文献

参考文献10

  • 1Yilmaz Alper, Shafique Khurram. Target tracking in airborne forward looking infrared imagery [J]. Image and Vision Computing, 2003, 21(7): 623-635.
  • 2Bal A, Alam M S. Automatic target tracking in FLIR image sequences using intensity variation function and templage modeling [J]. IEEE Trans. Instrumentation and Measurement, 2005, 54(5): 1846-1852.
  • 3Tagliasacchi Marco. A genetic algorithm for optical flow estimation [J]. Image and Vision Computing, 2007, 25(2): 141-147.
  • 4Murtagh F, Raftery A E, Starck J L. Bayesian inference for multiband image segmentation via model-based cluster trees [J]. Image and Vision Computing, 2005, 23(6): 587-596.
  • 5高丽,杨树元,李海强.一种有效的基于时空联合的视频对象自动分割新算法[J].中国图象图形学报,2005,10(9):1096-1104. 被引量:3
  • 6Karmakar G C, Dooley L S. A generic fuzzy rule based image segmentation algorithm [J]. Pattern Recognition Letters, 2002,23(10): 1215-1227.
  • 7Nikhil P Pal, Bezdek J C. On cluster validity for the fuzzy c-means model [J]. IEEE Trans. Fuzzy Systems, 1995, 3(3): 370-379.
  • 8刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23
  • 9Eschrich S, Ke Jingwei, Hall L O, et al. Fast accurate fuzzy clustering through data reduction [J]. IEEE Trans. Fuzzy Systems, 2003, 11(2): 262-270.
  • 10Kim Byung Gyu, Park Dong Jo, Novel target segmentation and tracking based on fuzzy membership distribution for vision-based target tracking system [J], Image and Vision Compution, 2006, 24(12): 1319-1331.

二级参考文献27

  • 1Adiv G. Determining three-dimensional motion and structure from optical flow generated by several moving objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985,7(4) : 384 -401.
  • 2Murray D W, Buxton B F. Scene segmentation from visual motion using global optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987,9 (2) : 220 - 228.
  • 3Aaeh T, Kaup A, Mester R. Statistical model-based change detection in moving video[J]. Signal Processing, 1993, 31(2) : 165 -180.
  • 4Mech R, Wollborn M. A noise robust method for 2D shape estimation of moving objects in video sequence considering a moving camera[ J ].Signal Processing, 1998,66(2) : 203 - 217.
  • 5Nerl A, Colonnese S, Russo G, et al. Automatic moving object and background separation [ J ]. Signal Processing, 1998, 66 ( 2 ) :219 -232.
  • 6Guo J, Kim J W, Kuo C C J. Fast and accurate moving object extraction technique for MPEG-4 object-based video coding[ A ]. In:Proceedings of SPIE [ C ], Boston, Massachusetts, USA, 1999,3653:1210 - 1221.
  • 7Kim Changick, Hwang Jenq-Neng. Fast and automatic video object segmentation and tracking for content-based applications [ J ]. IEEE Transactions on Circuits and Systems for video Technology, 2002,12(2) :122 - 129.
  • 8Shao-Yi Chen, Shyh-Yih Ma, Liang-Gee Chen. Efficent moving object segmentation algorithm using background registration technique[ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2002,12 ( 7 ) : 577 - 586.
  • 9Cavallaro A, Ebrahimi T. Accurate video object segmentation trough change detection [ A ]. In: Proceedings of IEEE International Conference on Multimedia and Expo [ C ] , Lausanne, Switzerland,2002,8:26 - 29.
  • 10GonzalezRafaelC WoodsRichardE 阮秋琦 阮宇智译.数字图像处理(第2版)[M].北京:电子工业出版社,2004.66-84.

共引文献24

同被引文献12

  • 1朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 2张旭光,赵恩良,王延杰.基于Mean-shift的灰度目标跟踪新算法[J].光学技术,2007,33(2):226-229. 被引量:22
  • 3KANG W J, DING X M, CUI J W, et al. Research on ex- traction of ship target in complex sea-sky background [ C ] ///The International Symposium on Instrumentation Science and Technology, Journal of Physics: Conference Series, 2006, 48 ( 1 ) : 354 - 358.
  • 4FEFILATYEV S, GOLDGOF D, SHREVE M, et al. De- tection and tracking of ships in open sea with rapidly mov- ing buoy-mounted camera system [ Jl. Ocean Engineering, 2012, 54 : 1 - 12.
  • 5WU Jiawei, MAO Shiyi, WANG Xiaoping, et al. Ship tar- get detection and tracking in cluttered infrared imagery [ J ]. Optical Engineering, 2011, 50 (5) : (057207) .'.
  • 6CHENG Yizong. Mean Shift, Mode Seeking, and Cluste- ring [ J~. IEEE Transactions on Pattern Analysis and Ma- hine Intelligence, 1995, 17(8) : 790-799.
  • 7HUANG S, HONG J. Moving object tracking system based on camshift and kalman filter [ C ] jJProceedings of the International Conference on Consumer Electronics, Communications and Net-works. Piscataway : IEEE, 2011 : 1423 - 1426.
  • 8FOUAD Bousetouane, LYNDA Dib, HICHEM Snoussi. Improved mean shift integrating texture and color features for robust real time object tracking [ J]. The Visual Com- puter-Springer, 2013, 29(3): 155- 170.
  • 9黄英东,范宁军,李杰.一种基于海天线检测的舰船定位方法[J].弹箭与制导学报,2008,28(5):286-288. 被引量:13
  • 10黄文韵,马惠敏,王生进.海面背景红外目标的识别算法[J].清华大学学报(自然科学版),2009(10):1609-1613. 被引量:13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部